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ABSTRACT

A general method for establishing a kinematic model of a robotic manipulator with
either a full or partial pose calibration system is developed. The theory applicable to
modeling of mechanisms is introduced, as is rovotic manipulator calibration. Given a
general over-specified kinematic model, a method is developed, with the associated
algorithms for a six degree of freedom manipulator, that identifies non-unique parameter
sets for any given partial pose measurement system. This method is applied and

demonstrated on three existing calibration methods.
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L. INTRODUCTION

The study of robotic manipulator calibration is a continuing quest to improve the
accuracy of the manipulator, thereby increasing its effectiveness and usefulness in the
workplace. Manipulator accuracy is the precision to which the robotic system can place
the end effector, or tool, in a commanded position and orientation, defined as the pose,
within the working volume [Ref 1]. A commanded pose is not one that has been
previously taught to the manipulator, but one that is directed from an outside source, such
as a computer data base. In order to achieve a commanded pose, the robotic system must
calculate the joint variables required for the given pose location and orientation within the
work space. This is accomplished by solving the inverse solution to the kinematic model
of the manipulator. Accuracy of general industrial robots can be as poor as 10mm
between the commanded and actual poses. [Ref. 2].

Repeatability is defined as the precision to which a manipulator can reacquire a
previously taught pose. This differs from accuracy in that the manipulator is placed in the
desired pose within the working volume, and the associated joint variables are then
recorded for later use during the work cycle. In contrast to the aforementioned accuracy
statistic, current manipulators have a high degree of repeatability, on the order of 0.1mm.
[Ref. 1]

As industry demands increase for both computerized process management and
computerized simu1ati(;n and reconfiguration of both repetitive tasks and unique, single

occurrence tasks, robotic manipulators are required to be programmed off-line and to
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share control programs. Off-line programming and shared control programs require a
much higher degree of accuracy than currently exists -- a degree of accuracy more in line
with current repeatability statistics.

Factors that impact the accuracy of a robotic manipulator include: (1) inaccurate
knowledge of the robot geometry and kinematic parameters, (2) link and joint compliance,
(3) steady state servo controller errors, (4) gear backlash, and (5) temperature variations
[Ref 3]. Since it would be extremely expensive to manufacture a robot with the required
stiffness and tolerances to negate the above issues and achieve the desired accuracy, the
resulting errors must be identified and accounted for. The calibration process is the
identification and corréction of these errors. For the purposes of this work, calibration
will only deal with the accurate identification of a manipulators actual geometry, or
kinematic parameters.

There are four basic steps to the calibration process: [Ref. 4,5]

1. A closed chain kinematic model of the manipulator and measurement system is
developed. This involves the determination of the identifiable kinematic parameters that
form the complete model. This complete model is used to determine an error quantity
based on the nominal kinematic parameter set and the actual measured set. The nominal
parameter values are provided by the manipulator manufacturer and the measurement
systém specifications and location.

2. Experimental measurements of the robot pose (partial or complete) are-taken.

These measurements are a function of the actual parameter set.




3. The actual kinematic parameter values are identified by systematically adjusting
the nominal parameters until the model predictions match the measured values, driving the
error functions, defined in the modeling phase to zero.

4. The final step is to incorporate the identified parameter set into the controlling
software for the manipulator.

This work addresses the first step of the calibration process, the development of the
closed chain kinematic model. Standardized and reliable approaches exist for modeling
any given manipulator itself. Yet, in order to perform a calibration, the model employed
must also incorporate the kinematics of the measurement system (full or partial) that is
used to get the expeﬁmental data. Determining this complete closed chain model is a
process that is neither obvious nor straightforward. The most difficult issue in closed
chain model development is whether or not an existing kinematic parameter can be
identified. The result of this thesis is a standardized method for determining the complete
closed-chain kinematic model for any manipulator and measurement system. This was
accomplished by defining a general, over-specified model, then conducting a calibration
simulation with this model in order to generate the system Jacobian. Finally, parameters
were systematically removed until a full rank Jacobian resulted, thus defining the complete

kinematic model.







II. THEORY

A. KINEMATIC MODELING

In order to understand how a manipulator achieves a commanded pose, one must
understand the format of the kinematic model. When a commanded pose is given to the
manipulator, it is specified relative to a world coordinate frame in the workspace. This
world coordinate frame is then moved through each link of the manipulator by a
coordinate transformation operation until it reaches the tool. The result is a description of
the commanded pose in joint space. This set of coordinate transformations makes up the
kinematic model of the manipulator. This section deals with the development of the
coordinate transformations and the kinematic model. The theory discussed and some of
the diagrams used in this chapter closely follow discussions by Paul [Ref. 9] and Mooring,
Roth and Driels [Ref. 10].

1. General Coordinate Transformations

As just described, the fundamental basis for kinematic modeling of a manipulator is
the successive movement of a set of coordinate axes from one position and orientation in
space to another. There are two building blocks that comprise the general coordinate
transformation, the rotation transformation and the translation transformation. For the
rotation transformation, consider two coordinate frames, where frame 2 has been rotated

an angle ¢ about the z axis of frame 1 (Figure 1). Note that the frames remain coincident




and share the same z axis, allowing a two dimensional representation of the x-y plane

(Figure 2). As illustrated in Figure 2, a point p is described in frame 2 by the vector

. P2 =Paiz +Ppj +Pak (1)
where i ; , j 2 and k; represent the x, y and z unit direction vectors of coordinate frame 2.

Likewise, point p can be described in frame 1 by the vector

p1 = pxl?l + pyljl + pzlﬁl (2)

2 2

Figure 1. Frame rotation about the z axis.

The position of point p in frame 1 can then be related to the position of point p in

frame 2 by:
Px1 = Px2COS$ - Py2Sing 3)
Dy1 = PxSin¢ + Py2C0S ¢ ©)
Pu T Pn (5)

Transferring these equations into matrix form results in equation 6:

Pxi cos¢ —sing 0 || p=
Pyt sing cos¢ 0 D2 (6)
Pz 0 0 1 P=

6




or
P1 =r0t(z,0)p: )

The notation rot(z, §) represents a rotation about the z axis of angle ¢. Similar analyses
can be conducted for rotations about the x and y axes. The results of these analyses will

be presented later.

Figure 2. 2-D view of frame rotated @ the z axis

The translation transformation can be thought of as moving the origin of a
coordinate frame to a new point described by the vector V, as illustrated in Figure 3,

where

®)

<
i
N < M

If the previous rotation and translation were to occur, the equation would be of the

form




<\

~ Ry

Figure 3. Translation of a coordinate frame
P1 =rot(z,0)pz + v (9)  For

convenience, equation 9 is expressed as a single matrix equation:

Pxt Px2
Py | | P (10)
pzl sz

w w

Where T is a 4x4 augmented matrix of the rotation and translation transforms and

w is a non-zero scale factor. For the example represented in equation 9, T is of the form:

cos¢ -sing 0 x

T= sing cosp 0y 1
0 0 1z (D
0 0 Ow

The matrix T is defined as the transformation matrix, and in the above example is a
product of the rotation about the z axis and translation transformation matrices. Equations

12 through 15 list the general form of the translation matrix and all the rotation




transformation matrices. Unless dealing with a perspective transformation, the scale factor

w equals one.

Trans(x,y,z) =

(12)

1 0 0
0 cosy -siny 0
0 siny cosy 0
0 0 0 w

Rot(x,y) = (13)

cos® 0 sinB 0
0 1 0 0
—sin® 0 cos® 0 (14)
0 0 0 w

Rot(y,0) =

cosd —sing 0 0

sing cos¢p 0 0

0 0 10 (15)
0 0 Ow

Rot(z,$) =

As evidenced in the previous example, a general coordinate transformation can be
the product of individual rotation and translation transformations. The transformation
represented in equation 16 can be thought of as a series of individual transformations, that
when read left to right, represent a transformation operation on, or relative to, the

resulting coordinate frame of the previous transformations.




|
o
_—0 O

o o
T o0 O

Trans(x,y,z)Rot(y,90)Rot(z,90) = (16)

000w ] O

Therefore, equation 16 represents a transformation that is a translation of the base

[SE
OO = O
SO D =
Fooo
D D
oo O
<o

frame origin in the x,y,z directions respectively, then a 90 degree rotation about that new

frame's y axis, then a 90 degree rotation about the z axis of the most recent coordinate

frame.

2. Euler Transformations

A six parameter transformation is required to transform from one coordinate frame
that is fixed in space to another frame, also fixed in space. That is, three rotations are
required to align the respective axes, and three translations are required to bring the
origins coincident. As may have been realized in the previous section, the order that the
transformations occur is important. This begs for the use of a standard frame to frame
transformation to avoid confusion.

The standard used in this work is the Euler transformation (Equation. 17), also
known as the Roll, Pitch, Yaw transformation and will be represented as
RPYT(¢,9,v,x,y,z) [Ref. 11].

RPYT(¢,0,v,x,y,z) = Rot(z,¢)Rot(y,0)Rot(x,y)Trans(x,y,z)(17)  This
can be read as a rotation ¢ about the z axis, followed by a rotation 8 about the new y axis,

followed by a rotation y about the new x axis, then an x, y, z translation in the direction

of the new x, y, z axes.

10




3. Denavit-Hartenburg Transformations

A manipulator is made up of a sequence of links that are connected to each other
by joints. A coordinate frame is associated with each link and a transformation matrix is
required to describe the relative positions of successive frames. Since the links fix the
geometric relationship between joints, there can be a reduction in the number of rotations
and translations required by the Euler transformation. The Denavit-Hartenburg
transformation provides an accepted systematic approach used to define link geometry and
coordinate frame placement, resulting in reduced parameter transformations between link
coordinate frames. For an n degree of freedom manipulator, there will be n links and n
joints. Figure 4 illustrates a PUMA 560 six degree of freedom manipulator. Link and
joint labeling starts at the base of the manipulator and progresses through to the tool, with
joint n preceding link n.  The base of the manipulator is defined as link 0, and not
considered to be one of the 7 links. Therefore link 1 is joined to link O by joint 1 and link
2 is joined to link 1 by joint 2, and so on.

A generic link geometry can be characterized by two dimensions, the link length
and link twist angle, illustrated in Figure 5. The link length, a,, is the length of the
common normal between the joint axes n and n+1. The link twist angle, a,, liesin a
plane that is perpendicular to the common normal and located at the intersection of the
common normal and joint axis n+1. This plane, therefore, contains joint axis n+1 and a
line that is a parallel projection of joint axis n. The twist angle, a,, is the angle formed by

the intersection of these two lines in the plane.
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The relationship of one link to the next, connected by a joint, is described by the
distanced, d,, and angle, §,, between links, as illustrated in Figure 6. Each joint axis n will
have two comman normal lines intersecting it, one for link n-I and one for link n. The
distance between the intersection points of the two common normal lines on the joint axis
is the distance between links, d,. The angle between links, 8, lies in a plane perpendicular
to joint axis 7 at the intersection of joint axis n and the common normal for link n-1 (N,).
Similar to the definition for a,, this plane contains the line N, and a parallel projection of

the common normal for link n (N, and N,"). The angle between links is then the

counterclockwise angle between N, and N,

Joint 2

Link |

Jount |

Link 0 __ Link 3

Figure 4. PUMA 560 robot manipulator with links and joints labeled

12




\Jomtn Joint n+l

Figure S. Generic manipulator link

With the link aﬁd joint geometries defined, coordinate frames can be assigned to
each link. For a revolute joint, illustrated in Figure 6, the angle between links, 6, is the
joint variable. The origin of the coordinate frame for link 7 is located at the intersection of
joint axis n+I and the common normal for link n (N, in Figure 6). The x, axis is aligned
along the common normal (N,), and the z, axis is placed along joint axis n+1. The joint
variable 6, is in the zero position when x, and x,,; are parallel. There are two exceptions
to this method of placement, specifically when two successive joint axes either intersect or
are parallel. For intersecting axes (n and n+1), the link length a, is set to zero. The
frame origin is placed at the intersection point of the joint axes. The x, axis direction is
normal to the plane that contains both joint axes n and n+1. For parallel axes there is not
a unique common normal, and the distance between joints, d,, can be arbitrarily chosen.

Therefore the frame origin is placed on the n+1 joint axis at a point that will make the

13



distance between joints zero for the next link, d, , ;, whose coordinate frame origin is

defined.
Jaintn .- Jaint n+l
: : A
Q[J dn 5 one
{
Joint n=i ! Linkn
\2 In-i Link a+!
.y £ 4
Link n=-2 an “n__7‘ Za
~ - NL
/ ,
7 N.

Figure 6. Revolute joint with link parameters
For a prismatic joint, illustrated in Figure 7, the joint variable is the joint distance
d,. Unlike a revolute joint, where the circular path of a point rotating about an axis
defines both the plane in which the rotation occurs and the location in space of the axis
about which the point rotates, the path of a point moving along a straight line,asina
prismatic joint, only defines an axis direction and not the location of the axis in space.
Therefore, the link length, a,, is meaningless for a prismatic joint. As a result, the

coordinate frame for a prismatic joint is placed coincident with the next defined link

14



coordinate frame origin. The z, axis direction lies along the n+1 joint axis with the x,

direction perpendicular to both the n+1 joint axis and the prismatic joint direction.

Joint n

HTH Joint n+!t

Joint n-1|

Link n-1|

Figure 7. Prismatic joint with link parameters

Having defined the geometric relationships between links and the joint coordinate
frame, the transformation matrices can be developed. The Denavit-Hartenburg
transformation uses the translation and rotation matrices discussed previously to step from
frame to frame in a logical manner. Referring to Figure 6, the transformation can be
completed in four steps:

1. Rotate an angle 6, about the z, , axis.

2. Translate a distance d, along the z, , axis.

3. Translate a distance a, along the new x axis (same direction as x,).

15




4. Rotate an angle a, about the x,, axis, aligning the z axis with the n+1 joint axis.

The resulting transformation matrix is described by equation 18:

A, = Rot(z,0,)Trans(z,d ) Trans(x,a_)Rot(x,o,) (18)

4. Modified Denavit-Hartenburg Transformation

The standard Denavit-Hartenburg transform provides an accurate model of a
manipulator for most forward kinematic solutions. But in the case of manipulator
calibration, where the kinematic parameters become the variables, potential problems arise
for parallel or nearly parallel consecutive axes.

Consider two parallel axes where a common normal does not exist between the
joint axes, and the coordinate frame placement is a matter of convenience. Ifin fact the
two axes are not actually parallel, then a common normal does exist between the two,
therefore fixing the position of the coordinate frame. This could result in a
disproportionately large change in the kinematic parameters that then cascades through the
remaining links and joints. These disproportional changes cause numerical instability in
the parameter identification process.

The Modified Denavit-Hartenburg transformation solves this problem by removing
the requirement for a common normal between joint axes. As illustrated in Figure 8, this
is accomplished by defining a plane that is perpendicular to joint axis »n and intersects joint
axis n at the origin of the n-1 coordinate frame. The intersection of joint axis n with this

plane defines the origin of coordinate frame n, and a line in the plane from frame #-1 to

frame n. [Ref. 12]
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; Joint n~-1
AXIS

Figure 8. Modified Denavit-Hartenburg transformation, after Ref. [12]
The transformation equation is then
A, = Rot(z,8,)Trans(x,r,)Rot(x,a, )Rot(y,B,) (19)

which consists of:

1. A rotation of angle 6, about the z, , axis

2. A translation of distance 7, along the line connecting the coordinate frame

origins n-1 and n, which is also the new x axis direction.

3. A rotation of ¢, about the new x axis

4. A rotation of 3, about the new y axis to align the z, axis direction with joint

axis n+1.

Equation 20 can then be used for any type of manipulator coordinate frame

transformation where B_ is set to zero for standard Denavit-Hartenburg transformations

17




applied to joints with non-parallel consecutive axes, and d, is set to zero for the
transformations between joints with nominally parallel axes.
A, = Rot(z,0,)Trans(z,d ) Trans(x,a )Rot(x,c. )Rot(y,B,) (20)
Equation 20 is the Modified Denavit-Hartenburg transformation equation that is
used in all calibration procedures in this work.
5. The Kinematic Chain
Once homogeneous transformation matrices(whether Euler or Modified
Denavit-Hartenburg) have been developed for a single coordinate frame transformation, it
is time to describe the pose of the end effector of a manipulator with respect to the world
coordinate frame of the work space. As mentioned previously, this is accomplished by
stepping from frame to frame, beginning at the world coordinate frame and ending at the
end effector coordinate frame. This path of homogeneous transformations is commonly
referred to as the kinematic chain. The kinematic chain is formed by sequentially
post-multiplying the transformation matrix chain by the next link homogeneous transform,
as in equation 21.
Tof = AA, A, AR 1)
The 'A' matrices are either Euler transforms, as for A,,° and A F, or Modified
Denavit-Hartenburg for A;'...A_". The notation used in equation (21) represents a
transformation from the world coordinate frame, W (subscript), to the end effector, E

(superscript). The kinematic chain is illustrated graphically in Figure 9.

18




Figure 9. Kinematic chain

6. General 30 Parameter PUMA Manipulator Model

Armed with the appropriate tools to model a manipulator, a model can be
generated for the PUMA 560 six degree of freedom manipulator illustrated in Figure 4.
The PUMA is used as the reference manipulator throughout this work. Figure 10 shows
the PUMA with the Modified Denavit-Hartenburg coordinate frames attached, as well as
the world coordinate frame, F,,, the manufacturers designated base frame, F,, and an end
effector frame, F,. The transformations from frame (1) to frame (5) each contain the
standard four parameters from the Modified Denavit-Hartenburg transformation, but the
transforms from the world frame to frame (1) via the base frame need to be considered

cazefully since potential parameter dependencies exist.
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w

Figure 10. PUMA 560 coordinate frame allocation

In order to ensure the minimum number of parameters required to move from the
world coordinate frame to frame (1), two possible paths may be taken. [Ref. 13] The
first path involves three Denavit-Hartenburg transformations, shown in Figure 11:

1. A four parameter transformation from the world coordinate frame to an

intermediate frame, designated frame (0).

A, = Rot(z,0,)Trans(z,d,)Trans(x,a,)Rot(x, ) (22)
2. A Denavit-Hartenburg transform from frame (0) to frame (b) that only requires

two of the four Denavit-Hartenburg parameters, 6,, d,.

20



A, = Rot(z,6,)Trans(z,d,) (23)
3. A four parameter Denavit-Hartenburg transformation from frame (b) to frame
(1)

A, = Rot(z,0,)Trans(z,d,) Trans(x,a,)Rot(x,a.,) (24)

Figure 11. Base transformations

The result of this path is an eight parameter transform from the world coordinate
frame to frame (1), since 6, and ¢, are both about the z, axis and cannot be identified
independently, and d, and d, are both along the z, axis and cannot be distinguished
indepgndently either.

The second path involves only two transforms to get from the world coordinate
frame to frame (1).

1. A full six parameter Euler transform from the world frame to the base frame.

21




A, = Rot(z,¢,)Rot(y,0,)Rot(x,y,) Trans(x,,y,,z,) (25)
2. A Denavit-Hartenburg transform from the base frame to frame 1.
A, = Rot(z,0,)Trans(z,d,) Trans(x,a,)Rot(x,a.,) (26)
As with the first path, a total of eight parameters are required to get from the
world frame to frame (1), since g, can be resolved into f,, g,, y, and d, can be resolved
into x,, y,, z,. Note that both paths require eight parameters, but not the same set of
eight. For this work the second path is used.
The last transform in the kinematic chain is from frame (5) to the tool, frame (6).
This is a full frame to ﬁame transformation and requires a six parameter Euler
transformation.
A® = Rot(z,d,)Rot(y,0)Rot(x, ) Trans(x,,y,,Ze) 27)
Table 1 provides the nominal values of the 30 parameters required for the PUMA

560, where the parmeters in bold type are not identifiable.

Link # A8 d a o B
0 180 -397 -383 90 0
1 0 467 0 -90 0
2 0 0 431.9 0 0
3 0 149.1 -20.3 90 0
4 0 433 0 -90 0
5 0 0 0 90 0
& 6, N2 P Py P,
0 0 0 0 0 135

Table 1. Nominal kinematic parameters for PUMA 560
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7. 28 Parameter SR1P Manipulator

Another manipulator model used in this work is the Driels and Pathre SR1P
manipulator shown in Figure 12. The SRIP is a six degree of freedom manipulator,
similar to the PUMA 560, but with 5 revolute joints and one prismatic joint. As discussed
in Section 3, the length a, for the prismatic joint 3 has no meaning and is defined to be
zero. With the location of the prismatic joint coordinate frame (frame 3) determined by
the common normal between axes 4 and 5, and placed coincident to the origin of frame
(4), the length d, is also, by definition, equal to zero. The kinematic model for the 5R1P is

then a 28 parameter model with the nominal parameters listed in Table 2.

Link # A8 d a o B
0 180 -397 -383 90 0
1 0 467 0 -90 0
2 0 250 0 90 0
3 0 0 30 0
4 0 0 -90 0
5 0 0 90 0
bs B, Vs Ps p, P,
90 0 0 0 0 134

Table 2. Nominal kinematic parameters for SR1P manipulator
B. PARAMETER IDENTIFICATION METHODOLOGY
1. Experimental Measurement
Assuming an appropriate, complete kinematic model of the manipulator has been
developed with nominal kinematic parameter values, actual parameter value identification
or calibration can be performed. Experimental measurements of the end effector pose are

taken. These can be either full or partial pose measurements, depending upon the
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measurement system used for calibration. Partial pose measurements do not measure all
six pose elements (three rotations and three translations). Complete kinematic models for
partial pose measurement systems have fewer than the full 30 parameter PUMA model,
depending on the constraints applied by the measurement system. For each pose, the
measured pose data and the associated joint angles are recorded. This process is repeated
for additional poses until an adequate data base is collected. An adequate data base is
dependent on the number of kinematic parameters to be identified (unknowns), and the
number of known pieces of data measured on each pose. For a full pose measurement
system, a minimum of N/6 different pose measurements must be taken, where N is the
number of parameters to be identified. This number must then be increased to account for
measurement noise and the degree of accuracy desired.

2. Identification

Once experimental measurements have been taken, with joint angles recorded for
each pose, the kinematic parameter values can be identified. One approach to identifying
the kinematic parameters is to determine the differential relationship between the pose
variables, P, and the kinematic parameters, K [Refs. 2,15]. The differential pose variables
are related to the differential kinematic parameters, or parameter error vector, by the
Identification Jacobian.

oP =J8K (22)

The differential pose variable vector, 0P, is a p x I column vector, where p is equal

to 6 for a full pose measurement system:
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Figure 12. SR1P Robot manipulator & coordinate frames, from Ref. [14].
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The Jacobian is a p x n matrix, where n is the number of parameters in the complete
kinematic model. The parameter error vector, 8K, is an # x I column vector of the
differential parameters. For multiple pose measurements each differential relationship is
appended on to the previous one, resulting in the equation:

0T =J6K (23)
Here 6T is a (p x m) x 1 vector, Jis a (p x m) x n matrix, 5K is still an n x 1 vector, and m
is the number of pose measurements taken. Equation 23 can then be inverted using the
Jacobian pseudo-inverse (since the Jacobian is not a square matrix), to solve for the
kinematic parameters directly:

8K = [J' I8 T (24)

To avoid solving equation 23 directly, a multidimensional optimization routine is
used to minimize a user defined error function based on the difference between the pose
data calculated from the nominal kinematic parameters and the actual pose data.

3. Optimization

An accurate approximation of actual kinematic parameters can be achieved by
systematically changing the nominal parameter set in a non-linear, least squares sense.
This is done until 2 minimum value is reached for the error function relating the actual and

nominal kinematic parameters [Ref. 16]. This non-linear least squares minimization of a
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pose data error function has been employed with success on numerous full and partial
pose robot calibration systems [Refs. 6,7,8,13].

The IMSL library routine ZXSSQ is a FORTRAN based algorithm that will
minimize a function over a given variable set using a Levenburg-Marquardt non-linear
least squares method. At each iteration in ZXSSQ, the next estimate of the variable set is
based on a numerical approximation of the Jacobian. The Jacobian approximation is
arrived at using forward or central difference methods around the current parameter set.
Upon satisfying the designated convergence exit criteria, ZXSSQ returns the most recent
estimate of the parameter set. Figure 13 illustrates the program flow of ZXSSQ where N
is the size of the variable set vector, x. ZXSSQ uses an external user-defined subroutine
that contains the error function to be minimized. Using this subroutine, it calculates the
finite difference gradient. Based on that gradient, it then re-evaluates the function and
tests for convergence.

The error function supplied to ZXSSQ is generated by calculating the differential

transformation matrix, A, as described by Paul [Ref. 7]

O —62 8y dx

5 0 -d:d
A=| =0y 25
5, 8 0 d. @3)

0 0 0 0

The A matrix is generated by calculating the forward kinematic solution of the
manipulator, T%, using the nominal kinematic parameters, TE, for each set of joint angles.
The forward kinemati-c solution is again calculated, but using the experimental pose
measurement data, TE™. The difference between T* and T*™ is the difference matrix AT.
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The elements of the AT matrix, t;, are used to calculate the elements of the differential
transformation matrix, A, equations 26-31, where the indices ; and j represent the
respective row and column of the matrix. The A matrix is only valid when the TE and T"

matrices are almost equal.

3~y I ' (26)
| 27)

UPDATE X

USER SUPPLIED SUBROUTINE
CALCULATE . CALCULATE
MINIMIZING |  GRADIENT D
FUNCTIONS
NO
CONUERGE?
YES
MA [N

Figure 13. Program flow for ZXSSQ
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.= 1 s

d=t, (29)
dy= th, (30)
d=t, 31

The error function is the sum of the squares of the elements of the A matrices for the

entire set of measured poses, equations 32 and 33.

£ £ (1,00)° (32)
=l =1

f.(x) =5,

fi,z(x) = 6y

fi,S(x) = 62

£ (x)=d, (33)
fi.s(x) = dy

fi,6(x) =d,

Note that for a partial pose measurement the error function is a sum of the squares of only
those elements in the A matrix that correspond to the actual measurement data taken. In
other words, if only position data is measured, and no orientation data, then the error
function will only use d,, d,, and d, for all the pose measurements.

In order to ensure that possition and orientation are equally weighted and

represented when minimizing the error function, all elements in A need to be the same

order of magnitude. Since the orientation error elements, J,, 9, and J,, are not the same
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order of magnitude as the possition elements, they are multiplied by a scale factor to
match and ensure a proportional optimization.

4. General Identification Algorithms

As stated in the previous section, ZXSSQ uses an externally defined error function.
The program ID6 contains the error function calculation in the subroutine PUMA ARM.
ID6 program flow is illustrated in Figure 14. ID6 reads an input file with nominal
kinematic parameter values for the particular model being calibrated. These values are
then used to initialize the variable vector x in ZXSSQ. ID6 also reads the measurement
data with the associated joint variable data, from another file, and passes all this
information in the proper format to ZXSSQ. The final parameter values from ZXSSQ are
output to a file with residual error values of position and orientation.

A simulation of the calibration process is conducted to ensure the identification
routine is correct, to predict the number of experimental pose measurements required to
complete the identification, and to estimate the resulting accuracy of the manipulator after
calibration. The sequence of simulation algorithms used is illustrated in Figure 15.
Program JOINT is used to generate random joint data within the constraints defined by
the work space and the pose measurement system. The program then writes this data to
PUMA_VAR. Program POSE calculates the forward kinematic pose matrix solution for
the associated joint data sets from PUMA VAR, and writes the combined data to
PUMA_POS. ID6 has been described previously. VERIFY confirms the accuracy of the

identification routine by calculating a total position and orientation error from a
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comparison of the forward kinematic solution, using the nominal parameter values and the

identified values.

(_ stant )

U

REARD /
[NPUT.DAT //

y

) IMITIALIZE X

/f READ /‘
7  MEASUREMENT
/ /

; DATA

CALCULATE
POSE ERROR

Figure 14. Program flow for ID6, form Ref. [8].
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Figure 15. Simulation process flowchart, from Ref. [7].
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III. COMPLETE MODEL DETERMINATION
A. INTRODUCTION
As previously stated, determining the complete closed-chain kinematic model of a
robot manipulator and calibration measurement system is the most difficult portion of the
calibration process. A complete model, as defined for this work, is the kinematic model of
the system with the minimum number of parameters required to achieve convergence to
the actual parameter values during identification. If there are not enough parameters in
the model, it does not fully describe the manipulator. Yet, with too many parameters the
model is over-specified, and the identification routine will not converge to an accurate
solution. Therefore, all the parameters in the model must be identifiable for it to be
complete. This also implies that an over-specified model contains parameters that cannot
be identified independently. Arriving at the number and type of identifiable parameters in
a kinematic model is where a majority of the work and thought reside in model
development.
Although well established, closed-chain models exist for full pose measurement
systems, less capable, partial pose measurement systems result in a reduction in the
number of identifiable parameters from the full pose model. Determining the constraints

and dependencies that exist in any given system is a difficult task since no clear,

standardized approach exists to determine the set of parameters required to define a

complete model. Therefore, model development frequently becomes an iterative, trial and

€ITor process.
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B. THE CLOSED-CHAIN MODEL

As stated previously, the closed-chain model incorporates both the manipulator
and measurement system kinematics, Figure 16. Here the manipulator kinematics have
been well defined using Denavit-Hartenburg or Modified Denavit-Hartenburg methods.
The measurement system kinematics uniquely define the position and orientation of the
end effector relative to the world coordinate frame. From this point on, the world
coordinate frame may be referred to as the measurement system frame (F,), since the

world frame is usually placed at some convenient location in the measurement system.

MANIPULATOR

/ KINEMATICS \
| T

=

MEASUREMENT
SYSTEM

KINEMATICS

Figure 16. The closed chain model, after Ref. [8].

An in depth analysis of the transformation from the independently located world or

measurement system coordinate frame to the manipulator base frame (T,, in Figure 16)
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was completed in Chapter II. Recall that dependencies existed between the world-to-base
transformation parameters and the manipulator kinematic parameters. Two different paths
were taken, resulting in different parameter sets but the same number of parameters.

The end effector transformation, T, is a six parameter transformation from the last
link of the manipulator (n-1 for an n degree of freedom robot) to the independent location
of the tool frame. The Euler transformations between the manipulator and measurement

system are illustrated in Figure 17.

INTERNAL
o MANIPULATOR
Y KINEMATICS \\\

RPYT($.8.¥.X.y.2) RPYT($,9,¥,X,Y,2)

I

Figure 17. Manipulator and measurement system transformations, from Ref. [8].

(4

Parameter dependencies may exist between the end effector transform and the
manipulator kinematics. Careful end effector coordinate definition and placement,

however, can usually avoid these dependencies. Additional parameter dependencies in
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frames T,, and T, may exist due to constraints incurred by the type of partial pose
measurement system used.

Work by Mooring, Roth, and Driels has determined limits for the number of
parameters required to define a complete model [Ref. 18]. Using Denavit-Hartenburg
definitions for manipulator kinematics, and including the requirement that any manipulator
must be referenced to an external world coordinate frame, four parameters are required
for each revolute joint (R) and two for each prismatic joint (P). With the additional six
parameters required to ensure independent location of the end effector frame, equation
(34) defines the required number of independent parameters, N, for completeness of any
manipulator.

N=2P+4R +6 (34)
For the PUMA and SR1P robots, N is equal to 30 and 28, respectively. Since any given
partial pose measurement system will impose constraints that result in unidentifiable
parameters, the value N becomes a maximum value. Therefore, for any six degree of
freedom robot, there can be in no case more than 30 parameters in the complete,
closed-chain model. Knowing that the measurement system can result in dependencies in
the measurement and end effector transformations, T,, and T, the total number of
identifiable parameters associated only with the manipulator is given by equation (35)

[Ref. 19].
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K=2P+4R-6 (35)
For the PUMA, the number of identifiable parameters in the manipulator kinematic model
is 18, 22 for the SRI1P.

The value K defines the number of parameters required for the manipulator to
move from the manipulator's base frame to the last link, frame n-1. The internal base
frame and frame n-1 are unique for any given manipulator and set of joint angles.
Therefore the shortest way to close the chain is by an Euler frame-to-frame transformation
between the two frames. Given that the manipulator kinematics are unique, there can be
no additional dependencies. Therefore, all six Euler parameters are independent. This
sets the lower bound on the number of independent, and thus identifiable, parameters for a
closed-chain model, equation (36):

M=2P +4R (36)
Thus the number of identifiable parameters in a closed-chain model, n, with any

measurement system, is governed by equation (37):
M<n>=N 37

Once limits to the number of parameters required for a complete model are known,
the field of view required to determine the complete model is narrowed. However,
equation (37) provides no information regarding the specific number or type of parameters
within those limits. It is understood that additional parameter dependencies and,
therefore, identifiability, are affected by the type of motion constraint applied to the end
effector, and the fom; of the measurement data (length, azimuth, and elevation etc.)

recorded by the system. Determining the relationship between the end effector motion
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constraints, measured data, and parameter dependencies is the challenge in closed-chain
manipulator modeling that often results in a trial and error process to determine the
complete model. Attempts to generalize and classify these relationships in this work
proved inconclusive. The following section investigates a method to circumvent these
problems and arrive at a complete model for any closed-chain system regardless of
relationships between the end effector motion constraints, measured data and the
identifiable kinematic parameters.
C. GENERAL METHOD

The identification Jacobian for a complete kinematic model is a full rank matrix
where the rank equals the number of identifiable parameters [Ref. 18]. Since a complete
model contains only identifiable parameters, the rank behavior of the identification
Jacobian is studied in detail. The rank of a matrix in a matrix equation, as in equation (22)
repeated here, provides an indication of the number of independent equations within the
system of equations represented in matrix form.

8P =J6K (38)

Therefore, it is assumed that if the rank of the identification Jacobian is less than the
number of kinematic parameters (the number of elements in 8K), then the model is
over-specified and dependencies exist. From Chapter II, Section B-2, the Jacobianisa p
x n matrix, where n is the number of columns and equal to the number of parameters in
the model. Each column contains the coefficients for each respective differential kinematic

parameter element in the vector K. Consequently, in the case of an over-specified model,
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setting the column that multiplies a dependent parameter in the 8K vector equal to zero
will not change the rank of the Jacobian. Likewise, removing a dependent parameter from
8K and its associated column in the Jacobian will not change the rank of J.

An over-specified, closed-chain model of a system is generated in this work, then
the identification Jacobian rank behavior is investigated. If the matrix is not full rank then
parameter dependencies exist. Those parameters (and their associated columns in the
Jacobian), that, once removed, do not affect the rank of J, are then removed from the
model. This is repeated until a full rank Jacobian is achieved. The resulting rank matrix
will contain only those parameters that are identifiable and define a complete model.

Since equation (34) defines the upper limit of the number of parameters in a
complete model, the value N is used to define the over-specified model and parameter set.
Once defined, the complete model determination process. In the case of the PUMA
manipulator, this is the full 30 parameter mode! defined in Chapter IL
D. GENERAL PARAMETER REDUCTION ALGORITHM

1. Simulation
One of the by-products of the optimization routine ZXSSQ used in the
calibration process is a numerical approximation of the identification Jacobian. By running
the first three steps of the calibration simulation (programs JOINT, POSE, and ID6), a

Jacobian approximation can be extracted.
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In order to determine the complete model parameter set for a six degree of
freedom manipulator, the programs POSE and ID6 are written to use the over-specified
30 parameter model for the PUMA manipulator defined in Chapter II.

Programs JOINT and ID6 are modified to represent the particular measurement
system used in the calibration process. The end effector pose constraints imposed by the
measurement system are accounted for when generating the random joint variable data in
program JOINT. The error function in ID6 is modified for each system to reflect the error
in only the parameters measured.

Although program ID6 will not converge to an accurate solution of the actual
kinematic parameters when using an over-specified model, the Jacobian can be extracted
for use in the general parameter reduction program GPRED. Upon extraction of the
Jacobian from the routine ZXSSQ, the Jacobian transpose product, J'J, is calculated and
written to the data file JTIDAT. This forms an N x N square matrix that saves memory
space and time, independant of the number of pose measurements simulated.

2. Program GPRED

The general parameter reduction program GPRED reads the J'J matrix from
JTJ.DAT and calculates the rank. From the difference between the rank, R, and the J'J
matrix dimension N (N is equal to 30 for the PUMA), the number of dependencies and,

therefore, non-identifiable parameters is known, equation (39):
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d=N-R (39)
With GPRED using the J'J product, a row and a column need to be removed from the
matrix to remove a parameter from the model.

GPRED then systematically investigates the dependency of each parameter by
removing the associated row and column from J'J and recalculating the rank. If the rank
is reduced by one, then the parameter removed is independent and identifiable. GPRED
then steps to the next parameter and tests it for dependency. If the rank does not change
then the parameter is dependent and not identifiable. The process is then sequentially
repeated with each successive reduced Jacobian until a full rank matrix is achieved and d
non-identifiable parameters have been extracted. The parameters remaining in the full
rank reduced J'J matrix define a complete model, kinematic parameter set. GPRED then
steps back out of the reduction and investigates for other possible complete model
parameter sets.

The resultant non-identifiable parameter set vectors, associated with each
complete model parameter set, are written to the file DDEP.DAT. Note that, for multiple
parameter sets, GPRED will find all possible permutations of each parameter set. As a
point of reference, this process will be described as the parameter reduction process for
the rest of this work.

3. Cdmplete Model Determination of Over-Specified SR1P Manipulator
In order to demonstrate the use of the complete model determination method

described in the previous sections, the parameter reduction process was applied to the
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SR1P manipulator with a full pose measurement system. Recall that the SRIP is a 28
parameter model with one prismatic joint.

Starting with a 30 parameter over-specified model (the 30 parameter PUMA
model from Chapter II), the parameter reduction should result in a 28 parameter set that
would define a complete model. To do this, the identification simulation routines
(programs JOINT and ID6) need to represent the prismatic joint. The 30 parameter
PUMA models in the identification routines were modified by defining the translation
parameter d, as the joint variable, vice 6, in the PUMA case, to accommodate the
prismatic joint three.

Running this '30 parameter over-specified model through the parameter reduction
process revealed a number of sets of dependent, non-identifiable parameters. Of the five
parameters listed in Table 3, any pair combination will define a set of non-identifiable
parameters. These parameters could be removed from the 30 parameter over-specified

model to form a 28 parameter complete model of the SR1P manipulator.

¢ | a& | o [ a [ d |
Table 3. SR1P non-identifiable parameters

Table 3 shows that possible dependencies exist with the link length, a,, and
distance between links, d,, for joints two and three and the distance between links for joint
four. Previously, for a prismatic joint, n, the parameters a, and d,, , are known to be

non-identifiable. For the SR1P manipulator, this corresponds to @, and d,. The general
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parameter reduction process confirmed the dependency of parameters a, and d,, and also
demonstrated that this set of parameters is not unique. Consequently, any given complete
model parameter set for a manipulator is not unique.

The parameter reduction process uncovered all possible permutations of the
non-identifiable sets, indicating that the order of parameter removal, within the imbedded

loops of the reduction process, has no affect on the outcome.
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IV. VERIFICATION OF COMPLETE MODEL DETERMINATION

As previously stated, standardized complete models of full pose measurement
systems exist. Determining the complete model for a partial pose measurement system is a
different task. This chapter verifies the use of the general complete model on two partial
pose, constrained measurement calibration systems, the modified linear slide [Ref. 8] and
the fixed length ball bar [Ref. 6].

A. MODIFIED LINEAR SLIDE

1. Physical Description

The linear slide system was used to calibrate a PUMA 560 by Potter [Ref. 7] then
modified by Swayze [Ref 8] to allow for a greater range of joint motion during
calibration.

The linear slide, pictured in Figure 18, used the x axis of a coordinate measuring
machine (CMM) to accurately measure the distance along the axis from some zero
reference point. The original linear slide, used by Potter, bolted the tool flange of the
PUMA to a flange on the CMM carriage. This fixed the orientation of the tool frame with
respect to the measurement system axis. Swayze modified this system by adding an off-set
ball and socket joint between the tool flange and the CMM carriage. This modification
allowed for a greater range of motion over the original linear slide, thereby increasing the

overall calibration accuracy.

45




Figure 18. PUMA with linear slide constrained measurement system.

This system places a physical constraint on the end effector, only allowing it to
move along the axis defined by the CMM. It measures the position of the end effector
frame on that axis.

2. Closed-chain kinematic model

As noted previously, the 18 kinematic parameters of the PUMA manipulator, from
the base frame to frame five, are unique and unaffected by different measurement systems.

The manipulator kinematic parameters are listed in Table 1. Parameters of the
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measurement system transformation, T_® , and the end effector transformation, T,", must
be determined.

For the end effector transformation, the ball joint provides three degrees of
freedom. This allows rotation about the three axes of a frame placed at the center of the
ball. The free rotation and fixed translation of the ball joint, therefore, define a point in
space. The end effector frame is placed at this point, but the orientation of the frame is
undefined.

The end effector transformation, therefore, moves from frame (5) to a point in
space. Any three of the six Euler parameters are necessary to make this transformation,
but one parameter must be a translation. Otherwise displacement of the origin is not
possible.

As the end effector and carriage assembly move along the CMM track, they define
an axis, not just a direction. The origin of this axis is located at the zero point for the
CMM readout. This zero point is the origin of the measurement system coordinate frame.

The measurement system transformation is developed by considering the base to
world transformation, T;", then inverting it. A three parameter transformation is required
to locate the origin at a point in space. Two rotations are then required to align any one
axis of the frame with the CMM track. This results in a five parameter transformation.
Table 4 is the parameter list, developed by Swayze [Ref. 19], for the two transformations,
pictured in Figure 19.. Note that the non-identifiable parameters listed in Table 4 are

indicated with a bold zero (0). With these eight parameters added to the 18 for the
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manipulator kinematics, there are 26 identifiable parameters in the complete closed-chain

model.
B E
TM TS
by e
6, 0
0 0
X,y Xe
Yu 0
Zy Zc

\5\0

Axis of Linear Slide

Figure 19. Linear slide transformations.

3. GPRED Results

With the error function properly defined in the simulation programs, a

30-parameter, over-specified model on the modified linear slide was run through the
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parameter reduction process to determine the complete model. The error function, ¢, is
the length measurement difference along the linear slide axis, represented by equation
(40):

e=1|x? +y2+z2]IE (40)
where the measured distance is x, with y and z nominally zero, and / is the readout from
the CMM system display of the actual value of x.

The rank of the Jacobian for the over-specified, modified linear slide was 26,
confirming a 26 parameter complete model. GPRED then found 48 possible parameter
sets (Table 5) that each result in a full ranking matrix, and, therefore, define a complete
model. GPRED confirmed the parameter set listed in Table 4. Note Table 5 is a
condensed representation of the total set of 48 parameter sets. The 16 end effector
parameter sets, when added to the measurement system parameter sets with either ¢_, 6,
or Y, removed individually, make up the 48 sets. The x indicators represent identifiable
parameters.

In order to confirm that other parameter sets are indeed valid and define a
possible complete model, one was chosen arbitrarily for simulation. The simulation code
described in Chapter II, Section 2-B was modified to reflect the 26 parameter set partially
listed in Table 6:

The calibration simulation using the parameters in Table 6, with no noise,

converged to within 1.0E” of the actual kinematic parameter values in the simulation.

This result confirms that a given complete model for a manipulator is not unique, and
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that any of the resulting parameter sets could be used to define a closed-chain, complete
model. The types of parameters required for the end effector and measurement system
transformations were consistent with those discussed in the previous section.
Specifically, they were consistent with a five parameter transformation from the
measurement system to the base frame, where one rotation parameter is not identifiable.
For the end effector transformation, three parameters were identifiable, with one

translation in every parameter set.

bm Om ‘l/m X Yo o |Zm be oe we X Ye Z.
orx { orx X X X X X
orx | orx X X X X
orx | orx X X X X
orx { orx X X X X X
orx { orx X X X X X
orx | orx X X X X X
or x orx X X X X X
orx | orx X X X X X
orx | orx X X X X
orx | orx X X X X X X
orx | orx X X X X X
orx j orx X X X X X
orx | orx X X X X X
orx | orx X X X X X
orx t{ orx X X X X X
orx { orx X X X X X X

Table 5. Complete model parameter sets for modified linear slide

GPRED again returned all possible permutations of every parametex set, proving

that the order of parameter removal within the process had no bearing on the end result.
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B. FIXED LENGTH BALL BAR

1. Physical Description

The second constrained, partial pose measurement system considered is a ball bar
of fixed length, developed by Driels [Ref. 6]. The ball bar constraint system used for
manipulator calibration, illustrated in Figure 20, is a rigid bar of fixed, known length with
a ball and socket joint at each end. One ball and socket joint is fixed to the robot's work
bench, the other is attached to the end flange of the last link of the manipulator. The end
effector is then physically constrained to a surface of fixed radial distance from the
reference point in the world or measurement system coordinate. The end effector is thus
limited to placement in a hemi-spherical surface, with a radius equal to the length of the

bar.

Figure 20. PUMA with ball bar constrained measurement system.
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0 0
Oy
Wn
Xy Xe
Yu Ye
Zy Ze

Table 6. Verified parameter set for the modified linear slide.

2. Closed-Chain Model

As with the modified linear slide, the 18 parameters associated with the PUMA
manipulator are unchanged. The measurement system and end effector frame placement,
and transformations, follow a similar development to the ball joint end effector of the
modified linear slide.

The location of the measurement system coordinate frame is chosen to be at the
center of the ball at the lower end of the bar. As with the modified linear slide end
effector, the ball joint defines a point in space with no frame orientation information.
Again, the transform from the base frame to the measurement system is considered, then
inverted. This is a frame to a point transformation, thus requiring three parameters, one of
which must be a translation. The measurement system frame is chosen to have the same
orientation as the base frame, therefore, three translation parameters, x,,y,, and z,,
comprise the identifiable parameters in the measurement system transformation.

The end effector transformation is also a frame to a point. The ball joint at the end
effector is displaced from the manipulator's frame five axis, z, in order to allow

identification of the encoder off-set, or joint variable, for joint six, 06, (refer to Figure 21).
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The three parameters @, X, and z, are chosen for the frame-to-point transformation. The
parameter @ was chosen as it inherently includes both the joint variable for joint six, and
the constant off-set to account for the mounting plate orientation on the PUMA's end

flange. The measurement system and end effector frame transformation parameters are

listed in Table 7.
T TS
e
0
Xy Xg
Yu 0
Zy Z:

Table 7. Ball bar complete closed-chain model parameters.

Figure 21. Ball bar end effector transformation.
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3. GPRED Results

Using the general parameter reduction process, possible complete parameter sets
were determined from the 30 parameter, over-specified model. Before the calibration
simulation and parameter reduction could be performed, the appropriate error function
was defined. The error function for the ball bar system is similar to the linear slide,

repeated here and illustrated in Figure 22.
e=|d-1 (41)
|
d=[x*+y2+2z'}? (42)

where the value [ is the fixed length of the bar, and d is the distance between the end

effector and the measurement system coordinate frame.

(x,y,2)

Figure 22. Ball bar kinematics.

From GPRED, the rank of the over-specified model was 24, confirming that the
complete model has 24 parameters. The output from GPRED showed that 17 possible

parameter sets exist, Table 8, to include the identifiable parameter set developed by Driels
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[Ref. 6]. The x markers in Table 8 indicate an identifiable parameter, with only the
measurement system and end effector transformations shown, since no change occurred

within the manipulator kinematic parameter set.

d)m em Vm X Yo |Zm ¢e 6,3 Ye X, Yo Z,
X X X X X X
X X X X
X X X X X
X X X X X
X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X X
X X X X X X
X X X X X
X X X X X X
X X X X X
X X X X X
X X X X X X

Table 8. Complete model parameter sets for fixed length ball bar.

The resulting parameter sets reveal that no change occurred in the measurement
system kinematics, only the three translation parameters are identifiable. The end effector
transformation followed along the same line as the modified linear slide end effector,
requiring any three parameters, as long as one of the three is a translation. The parameter
set in Table 9 was arbitrarily chosen in order to confirm that the other parameter sets

actually do converge to an accurate solution of the actual kinematic parameters.
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The simulation programs were modified by removing the effect of the
non-identifiable parameters listed in Table 9, resulting in a 24 parameter model. The
results of this 24 parameter simulation, with no noise injected, converged to within 1.0E"
of the actual parameters. This confirms that the parameters listed in Table 9, added to the
18 manipulator kinematic parameters, define a complete model of the PUMA with a ball
bar constrained measurement system. Consequently, the other parameter sets listed in

Table 8 will also define other non-unique complete model parameter sets.

T, TF
0 b
0
0
Xy Xe
Yu 0
Zy Z

Table 9. Verified parameter set for the fixed length ball bar.
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V. DISCUSSION OF RESULTS

The general parameter reduction routine, GPRED, is able to determine complete
model kinematic parameter sets by examining the identification Jacobian produced by the
calibration simulation of an over-specified model. This was demonstrated by applying the
process to the Driels and Pathre SR1P manipulator and the PUMA 560 manipulator with
two different partial pose, constrained measurement systems - the modified linear slide,
and the fixed length ball bar. The results indicate that by starting with the 30 parameter
over-specified model used in this work, the parameter reduction process can determine the
complete, closed-chain kinematic model parameter set for any six degree of freedom
mechanical linkage manipulator and measurement system, full or partial pose. The
following explanation outlines how to use this method to determine the complete model
kinematic parameter set.

The first step in the process is to appropriately define the error function to be used
in the simulation code. This error function is based on the actual type of measurement
taken and the parameters in the world coordinate frame that relate to that measurement.
Using the ball bar as an example, once the world coordinate frame is fixed to the lower
end of the ball bar, the x,y,z coordinates of the other end are used to calculate a radial
distance to that point. This distance is then compared to the length of the bar to determine
the error (refer to equation 41). The x,y,z parameter values are determined from the

forward kinematic solution transformation matrix, for the given set of joint angles, to
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calculate the radial distance. The error function in the subroutine PUMA_ARM in ID6
can then be modified to represent the measurement system employed.

If the measurement system constrains the motion of the end effector, then the error
function, in the program JOINT, must be modified in a similar way. The program JOINT
generates the random joint data used in the simulation. The error function is used to
ensure the joint data generated actually places the end effector within the constraints.

If the manipulator under study incorporates a prismatic joint, as opposed to all
revolute joints, then the joint variable definitions need to be modified to reflect the change.
This is a simple, two-line change in each forward kinematic solution calculation, for which
there is one in the proéram POSE and one in the subroutine PUMA_ARM. The program
ID6P30, used to simulate the SR1P, provides an adequate example.

If other than a six degree of freedom manipulator is being used, the standard
Denavit-Hartenburg and Modified Denavit-Hartenburg transformations can be used to
generate the over-specified model. The maximum number of parameters should not
exceed the value of N from equation (43), where 7 is the total number of joints.

N=4n+6 (43)
The forward kinematic solutions would need to be modified to represent this manipulator.

Once appropriate changes have been made to the simulation code, the simulation is
performed, followed by the general parameter reduction routine GPRED. Appendix A
contains GPRED for a 30 parameter over-specified model and ten levels of reduction.

This satisfies the parameter limits described in equation (37).
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GPRED outputs a series of vectors of non-identifiable parameters. Each set, when
removed from the over-specified model, represents a non-unique model parameter set.
The vectors contain the index values corresponding to the parameter vector element
assignment in the program ID6. GPRED writes all the permutations of the dependent
non-identifiable parameter vectors to DEPP.DAT.

Having completed this process, any of the resulting parameter sets can be
implemented to conduct the actual manipulator calibration. The number and types of
observations, or measurements, needed to achieve an accurate calibration are addressed
elsewhere.

Although the simulation code allows noise to be injected into the simulated system,
noise was not required to observe the Jacobian rank behavior of the systems investigated
in this work. The effect of noise would require many more measurements to be simulated
to prevent a significant reduction to the final accuracy. Noise effects on robot calibration
and simulation have been studied elsewhere in depth. The only advantage to injecting
noise in the system would be to determine whether the simulation phase (in order to
determine the Jacobian approximation) of the general complete model determination
process could be avoided. Instead experimental data may be used directly as an input to
program ID6, and the general parameter reduction, GPRED, resulting in complete model
parameter sets without required simulation. The new, complete model could then be

implemented and the manipulator calibrated using the same data.
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VL. CONCLUSIONS

The results of the research reported in this thesis provide the following
conclusions:

1. A general method to determine a complete closed-chain model of any
manipulator and measurement system, full or partial pose, beginning with an
over-specified model, exists and works successfully.

2. Any given, complete model parameter set for a robot manipulator is not
unique.

3. The identification Jacobian rank behavior directly correlates to parameter
dependence and identifiability.

4. The order of dependent parameter removal from the model has no bearing

on the outcome of the final model.

5. Changes in the manipulator configuration only affect the manipulator
kinematics.
6. Changes in the measurement system configuration only affect the

measurement system kinematics.
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APPENDIX A. PROGRAM GPRED

@ R de e e ke e e e de e AR A e e e e e e e de de e e e e e e e de e e e e ke e e e e
program gpred

This program reduces a 30 parameter model pseudo

inverse jacobian (jTj) by each parameter and investigates the
changes in the rank of the reduced matrix IOT determine

the minimum set of independent parameters

on0aan

INTEGER NN, NDP
parameter (NN = 30, NDP = 30)

REAL*8 JTJ(NN,NN), JRL{NN-1,NN-1), JR2(NN-2,NN-2)
REAL*8 JR3I(NN-3,NN-3), JR4(NN-4,NN-4), JRS(NN-5,NN-5)
REAL*8 JR6(NN-6,NN-6), JR7(NN=-7,NN-7), JR8(NN-8,NN-8)
REAL*8 JRY9(NN-9,NN-9), JRLO(NN-10,NN-10)

INTEGER DP(NDP), DPI(NDP),DPF(NDP)

REAL*8 U(NN,NN), V(NN,NN), TOL, S(NN)

REAL*8 ULl(NN-1,NN~-1), V1(NN-1,NN-1), SL(NN-1)
REAL®8 U2(NN-2,NN-2), V2(NN-2,NN-2), S2(NN=2)
REAL*8 U3(NN-3,NN-3), V3(NN-3,NN-3), S3(NN-3)
REAL*8 U4(NN-4,NN-4), V4(NN-4,NN-4), S4(NN-4)
REAL*8 US(NN-5,NN-5), VS(NN-5,NN-5), SS(NN-5)
REAL*8 U6(NN-6,NN-6), V6(NN-6,NN-5), SE(NN-§)
REAL*8 U7(NN-7,NN-7), V7(NN-7,NN-7), ST(NN=T)
REAL*8 U8(NN-8,NN-8), VB8(NN-8,NN-8), S8(NN-8)
REAL*8 U9(NN-9,NN-9), VI(NN-9,NN-9), SI(NN-9)

REAL*8 UlQ(NN-10,NN-10), V10(NN-10,NN-10), S10(NN-10)

INTEGER SIZEZ, SIZEl, SIZE2, RJAC, N, RJTJ
INTEGER Rl, R2, R3, R4, RS, R6, R7, R8, R9, R1O
INTEGER 21, 22, 23, 24, 25, 26, 27, 28, 29, 210
INTEGER IP, LVL, COUNT, D

INTEGER I,II,III1,JJ,J3J,Kk,m

C write jTj to a file in column order

OPEN (10,NAME='DEPP_ls.DAT’, STATUS='NEW’)
OPEN (1S,NAME='JTJ.DAT’, STATUS='0OLD’)

read(15,*)
read(15,*)n,cjtj

read(1l5,*)
read(1l5,*)

do k = 1,N
do kk = 1,N
read(15,*) jti(kk,k)
enddo
enddo

CLOSE (15)
IPp = 00
TOL = 1.E-3
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Z1=NN-1

Z2 = z1-1
Z3 = 22-1
Z4 = 23-1
25 = Z74-1
Z6 = Z75-1
Z7 = Z6-1
28 = z27-1
Z9 = 78-1
Z10 = 29-1
COUNT = 1
D = N-RJTJ
m =1

CALL DLSVRR(NN, NN, JTJ, NN, IP, TOL, RJAC, S, U, NN, V, NN)
IF (RJAC .LT. N .AND. RJTJ .EQ. RJAC) THEN

DO I = 1,NN

WRITE(6,*) '1-',I,count,m

m = m+l

CALL MARED(JTJ,I,N,JRL)

CALL DLSVRR(Z1,Zl,JRl,NN-1,IP, TOL,RIL,
S1,Ul,NN-1,V1,NN-1)

IF (Rl .EQ. RJAC) THEN

LVL = 1

DP(LVL) = I

IF (D .EQ. LVL) THEN
CALL SORTDP({DP,D)
COUNT = COUNT+l
GOTO 100

END IF

DO II = 1,21

WRITE(6,*%) '2-',II,count,m

m = m+l -

CALL MARED(JR1,II,Z1,JR2)

CALL DLSVRR(Z2,Z2,JR2,NN-2,IP, TOL,R2,
$2,U2,NN-2,V2,NN-2)

IF (R2 .EQ. RJAC) THEN

LVL = 2

DP(LVL) = II

IF (D .EQ. LVL) THEN
CALL SORTDP(DP,D)
COUNT = COUNT+1
GOTO 200

END IF

DO III = 1,22
WRITE(6,*) '3-’,I1I,count,m

m = m+l
CALL MARED(JR2,III,Z2,JR3)
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CALL DLSVRR(Z3,Z3,JR3,NN-3,IP, TOL,R3,
$3,U3,NN=-3,V3,NN-3)

IF (R3 .EQ. RJAC) THEN

LVL = 3

DP(LVL) = III

IF (D .EQ. LVL) THEN
CALL SORTDP(DP,D)
COUNT = COUNT+L
GOTO 300

END IF

DO JJ = 1,73

WRITE(6,*) '4-',J3J,count,m

m = m+l

CALL MARED(JR3,JJ,23,JR4)

CALL DLSVRR(24,24,JR4,NN-4,IP, TOL,R4,
S4,U4,NN-4,V4,NN=-4)

IF (R4 .EQ. RJAC) THEN

LVL = 4

DP(LVL) = JJ

IF (D .EQ. LVL) THEN
CALL SORTDP(DP,D)
COUNT = COUNT+1
GOTO 400

END IF

DO JJJ = 1,Z4

WRITE(8,*) '5-’,J3J,count,m

m = m+l

CALL MARED(JR4,JJJ,Z4,JRS)

CALL DLSVRR(Z5,25,JRS,NN-5,IP, TOL,RS,
$5,U5,NN-5,V5,NN=-5)

IF (RS .EQ. RJAC) THEN

LVL = 5

DP(LVL) = JJJ

IF (D .EQ. LVL) THEN
CALL SORTDP(DP,D)
COUNT = COUNT+1
GOTO 500

END IF

DO JII = 1,25

WRITE(6,*) '6~’,JII,count,m

m = m+l

CALL MARED(JRS,JII,ZS,JR6)

CALL DLSVRR(Z6,26,JR6,NN-6,IP, TOL,RSE,
S6,U6,NN-6,V6 ,NN=-6)

IF (R6 .EQ. RJAC) THEN

LVL = 6
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DP(LVL) = JII

IF (D .EQ. LVL) THEN
CALL SORTDP(DP,D)
COUNT = COUNT+1
GOTO 600

END IF

DO JJI = 1,26

WRITE(6,%*) '7-',JJI,count,m

m = m+l

CALL MARED(JR6,JJ31,26,JRT7)

CALL DLSVRR(Z7,27,JR7,NN-7,1P, TOL,R7,
$7,U7,NN=-7,V7,NN=7)

IF (R7 .EQ. RJAC) THEN

LVL = 7

DP(LVL) = JJI

IF (D .EQ. LVL) THEN
CALL SORTDP(DP,D)
COUNT = COUNT+l
GOTO 700

END IF

DO JIJ = 1,27

WRITE(6,*) '8-',J1J,count,m

m = m+l

CALL MARED(JR7,JI1J,Z7,JR8)

CALL DLSVRR(Z8,28,JR8,NN-8,IP, TOL,RS,
s8,U8,NN-8,V8,NN-8)

IF (R8 .EQ. RJAC) THEN

LVL = 8

DP(LVL) = JIJ

IF (D .EQ. LVL) THEN
CALL SORTDP(DP,D)
COUNT = COUNT+1
GOTO 800

END IF

DO IIJ = 1,28

WRITE(6,*) '9~’,I11J,count,m

m = m+l

CALL MARED(JR8,IIJ,Z8,JR9)

CALL DLSVRR(Z9,29,JR9,NN-9,IP, TOL,R9,
S9,U9,NN-9,V9 ,NN=-9)

IF (R9 .EQ. RJAC) THEN

LVL = 9

DP(LVL) = IIJ

IF (D .EQ. LVL) THEN
CALL SORTDP(DP,D)
COUNT = COUNT+1
GOTO 900

END IF
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1000
900
800
700
600
500
400
300
200
100

DO IJJ = 1,29

WRITE(6,*) "10-',IJJ,count,m

m = m+1l

CALL MARED(JR9,1JJ,29,JR10)

CALL DLSVRR(ZlO,ZlO,JRlO,NN-lO,IP, TOL,R10,
S10,U10,NN-10,V10,NN=-10)

IF (R10 .EQ. RJAC) THEN

LVL = 10

DP(LVL) = 1IJJ

IF (D .EQ. LVL) THEN
CALL SORTDP(DP,D)
COUNT = COUNT+1
GOTO 1000

END IF

END IF
ENDDO
END IF
ENDDO
END IF
ENDDO
END IF
ENDDO
END IF
ENDDO
END IF
ENDDO
END IF
ENDDO
END IF
ENDDO
END IF
ENDDO
END IF
ENDDO

END IF
WRITE(10,*) ’'# parameter vectors =',m

END

C de de de vt e de e ve e e e dr o e e e de de O vk die de e e o A e e e Je sk e e e de e e de e e e o e de e e de s e e

SUBROUTINE SORTDP (DP,DIF)

INTEGER DIF, K, I, J, ss, s
INTEGER DP(DIF), DPI(10), DPF(1l0)
parameter(ss = 30)

integer pl(ss), cpl(ss-1)

do i = 1,ss
pl{i) = i
enddo

S = SsS
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DO J = 1,DIF
call vred (dp(j).,pl,s,rpl.dpi(j))
s = g-1 .
do k = 1,s
pl(k) = rpl(k)
enddo
ENDDO
if (dp(l) .ne. dpi(l)) then
write(6,*) ‘subroutine sort misfunction’
end if

CALL SVIGN (DIF,DPI,DPF)
WRITE(LOQ,*) (DPF(JK), JK=1,DIF)
WRITE(6,*) (DP(JK), JR=1,DIF)
weite(6,*) (dpi(jk), jk=1,dif)
WRITE(6,*) (DPF(JK), JR=1,DIF)
RETURN

END

C ***ti*it**ﬁt*t*ﬁtﬁt********ﬂ*i**ﬁ*******i***t*#

subroutine mared(JT,IN,S,JINEW)

integer s, IN, JR, JC, KR, KC
real*8 JT(S,S), JNEW(S-1,S-1)

JR = 1
DO KR = 1,S5-1
IF (KR.EQ.IN) THEN
JR = JR+1
END IF
JC = 1
DO RKC = 1,5-1
IF (KC.EQ.IN) THEN
JC = JC+1
END IF

JINEW(KR,KC) = JT(JR,JC)
JC = JC+1

ENDDO

JR = JR+1
ENDDO
c WRITE(6,*) JT(1,1),JINEW(Ll,1)
RETURN
END

c *ttﬁ**ﬁﬁﬁt**tﬁﬁﬁtﬁ#ﬁ*****t**ﬁ*****i*ﬁﬁ***t#tt**
subroutine vred(in,pli,s,plo,pv)
integer in, s, pv, jc, ke

integer pli(s), plo(s-1)

pv = pli(in)
JC = 1
DO KC - 1,5—1
IF (RC.EQ.IN) THEN
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JC = JC+1

END IF
plo(KC) = pli(JC)
JC = JC+1

ENDDO

return

end
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APPENDIX B. PROGRAM POSE FOR LINEAR SLIDE

PROGRAM blinsc

This program generates joint angles for the Puma manipulator

arm. It presumes that the tool frame of the manipulator is
constrained to move in the positive x direction only. The

tool is constrained by a ball joint mounted to a sliding lineacr scale.

The values along the x direction are determined by a random number
generator.

aoanNnnOaon

INTEGER LDFJAC, M, N, obs, nobs
PARAMETER (LDFJAC=3, M=LDFJAC, N=§)

real*8 £i0, th0, si0, px0, py0, pz0
REAL*8 DT1, DT2, DT3, DT4, DTS

REAL*8 DD1, DD2, DD3, DD4, DDS

REAL*8 AAl, AA2, AA3, AA4, AAS

REAL*8 ALl, AL2, AL3, AL4, ALS

REAL*8 BLl, BL2, BL3, BL4, BLS

REAL*8 DF6, FI6, THE, SI6, PX6, PY6, PIS

REAL*8 RN1,RN2,RN3,RN4,RNS,6RN6
REAL*8 RN7,RN8,RNS,RN10,RN11,RN12
REAL*8 RN13,RN14,RN15,RN16,RN17,RN18 -

INTEGER infer,ier,iopt,nsig,maxfn

REAL*8 FJAC(LDFJAC,N), xjtj((n+l)*n/2), xjac(ldfjac,n)
REAL*8 parm(4), £(ldfjac), work{((S*n)+(2*m)+((n+l)*n/2))
REAL*8 X(N)

REAL*8 magnx,magnl

EXTERNAL PUMA_ARM

INTEGER I, J, K, nou
REAL*8 TDES(3), T(4,4), SCALE, DANGLE, DLENTH, NUM

COMMON /PDATA/ TDES, DANGLE, DLENTH, T

COMMON /KIN/ £i0, th0, si0, px0, py0O, pz0,
pTl,DT2,D0T3,DT4,DTS,
ALl,AL2,AL3,AL4,ALS,
AAl,AA2,AA3,AA4,AAS,
ppLl,DD2,DD3,DD4,DD5,
BLl,BL2,BL3,BL4,BLS,
DF6,TH6,S16,PX6,PY6,PZ6

R

C Initialize data variables
obs=0
C Open data files for input

OPEN (10, NAME='puma-pos.dat’, STATUS='NEW’)
OPEN (9, NAME='input.dat’, STATUS='OLD’)

C Read input kinematic data

read (9,*)
read (9,*) £i0,th0,si0,px0,py0,p2z0
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read (9,*) dtl,ddl,aal,all,bll
:ead (91') dtz,ddzlaazlalz,blz

read (9,*) dt3,dd3,aa3,al3,bl3

read (91*) dt4’dd4’aa4lal4,bl4

read (9,*) dt5,ddS,aa5,als,bls

read (9,*)

read (9,*) dfs,thé,sis, o

read (9,*) px6,py5,pes

read (9,*) nobs,nou,dangle,dlenth,magnx,magnl
close (9)

C Adjust nominal values

fi0=fi0+dangle
thO=th0+dangle
si0O=si0+dangle
px0O=px0+dlenth
pyO=pyO+dlenth
pzO=pz0+dlenth

dtl=0.0

dt2=dt2+dangle
dt3=dt3+dangle
dt4=dt4+dangle
dtS=dtS5+dangle

all=all+dangle
al2=al2+dangle
al3=alli+dangle
al4=ald4+dangle
alS=alS+dangle

aalmaal+dlenth
aal=aa2+dlenth
aa3=aa3+dlenth
aad=aad+dlenth
aaS=aaS+dlenth

dd1=0.0
dd2=0.0
dd3=dd3+dlenth
dd4=dd4+dlenth
ddS=ddS+dlenth

bll=bll
bl2=bl2+dangle
bl3=bl3
bl4=bl4
blS=bl5

df6=df6+dangle
thé=thé+dangle
sigm=sib+dangle
px6=px6+dlenth
pyS=py6+dlenth
pzé=pz6+dlenth

C Get random number seed
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write

(6,*) 'Type in a 6-digit random number seed’
read (5,*)

iseed
C Start of main loop
1010 obs=cbs+1

C Set joint angles to zero
x(1)=70.0
x(2)=0.0
x(3)=90.0
x{4)=0.0
x(5)=50.0
x(6)=90.0

C Get random bar lengths

1000 call random (iseed,num)
num=num*940.0

C Establish desired tool point

TDES(1l)= num
TDES(2)= 0.0
TDES(3)= 0.0

C Call IMSL ZXSSQ for inverse kinematic solution

nsig=4
eps=0.0
delta=0.0
maxfn=500
iopt=1l
ixjac=ldfjac

CALL ZXSSQ(puma_arm,m,n,nsig,eps,delta,maxfn,iopt,parm,x,
& ssq,f,xjac,ixjac,xjtj,work,infer,ier)

C Check for singularities
if (ssq .gt. 0.00001) goto 1000
C Print results to 2 decimal places
write(6,*) obs,ssq
C Generate the random noise

CALL RANDOM (ISEED,RN1)
CALL RANDOM (ISEED,RN2)
CALL RANDOM (ISEED,RN3)
CALL RANDOM (ISEED,RN4)
CALL RANDOM (ISEED,RNS)
CALL RANDOM (ISEED,RN6)
CALL RANDOM (ISEED,RN7)
CALL RANDOM (ISEED,RNS8)
CALL RANDOM (ISEED,RN9)
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anan

RN1 = MAGNX * (2.0 * RNl - 1.0)

RN2 = MAGNX * (2.0 * RN2 - 1.0)

RN3 = MAGNX * (2.0 * RN3 - 1.0)

RN4 = MAGNl * (2.0 * RN4 - 1.0)

RNS = MAGNL * (2.0 * RNS5 - 1.0)

RN6 = MAGNLl * (2.0 * RN6 - 1.0)

RN7 = MAGNL * (2.0 *» BRN7 - 1.0)

RN8 = MAGNl * (2.0 * RNS8 - 1.0)

RN9 = MAGN1l * (2.0 * RN9 - 1.0)
X(1l) = X(1) + RN4

X(2) = X(2) + RNS

X(3) = X(3) + RN6

X(4) = X(4) + RN7

X(5) = X(S5) + RNS8

X(6) = X(6) + RN9
tdes(l)=tdes(l)+rnl
tdes(2)=tdes(2)+rn2
tdes(3)=tdes(3)+rn3

write (10,*) X(1),X(2),X(3),X(4),X(5),X(6)
write (10,*) tdes(l),tdes(2),tdes(3)

write (10,*)

Continue for other bar angles

if (obs .lt. nobs) go to 1010
CLOSE (10)

END

*tk*******t***if***********tﬁt*ﬁ#t*itﬁ*tt***t***ﬁ**ﬁ*ﬁﬁ**tﬁ*ﬁﬁ**

SUBROUTINE PUMA_ARM (X,M,N,F)

This subroutine calculates the non-linear function for the use of
the IMSL routine ZXSSQ. It is the forward kinematic solution for

the PUMA manipulator.

INTEGER M, N
REAL*8 X(N), F(M)

INTEGER II, JJ

real*8 £i0, th0, si0, px0, py0, pz0
REAL*8 DT1l, DT2, DT3, DT4, DTS

REAL*8 DD1l, DD2, DD3, DD4, DDS

REAL*8 AAlL, AA2, AA3, AA4, AAS

REAL*8 ALl, AL2, AL3, AL4, ALS

REAL*8 BL1, BL2, BL3, BL4, BLS

REAL*8 DF6, FI6, TH6, SI6, PX6, PY6, PZ6

REAL*8 THL, TH2, TH3, TH4, THS

REAL*8 TO(4,4), TL1(d,4), T2(4,4), T3(d,4), T4(4,4)

REAL*8 TS(4,4), T6(4,4), tcpy(d,d), txyz(4,4)
4)

REAL*8 TIMAT(4,4), T(4,4), td(d4
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INTEG

ER I, J

’

K

REAL*8 TDES(3},

DANGLE, DLENTH,scale

COMMON /PDATA/ TDES,

~COMMON /KIN/ £i0,th0,si0,px0,py0,pz0,

R R

C Initialize the TIMAT matrix to an I matrix:

DANGLZ, DLENTH,

bT1,DT2,DT3,DT4,DTS,
ALL,AL2,AL3,AL4,ALS,
AAL,AA2,AA3,AA4,AAS,
DD1,DD2,DD3,0D4,DD5,
BLl,BL2,BL3,BL4,BLS,
DF6,TH6,SI6,2X6,PY6,P26

T

DATA TIMAT/1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1/

scale

=100.0

C Initialize the T matrix to an f matrix

DO II
DO JJ

ENDDO
ENDDO

C Manipulator

THL
THZ
TH3
TH4
THS
FI6

C Compute the

call
call
call

CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL

= 1,4
= 1,4

T(II,JJ) = TIMAT(II,JJ)

DF§

T matrices,

Tl thru T6:

t3cpy (£i0,th0,si0, trpy)
t3xyz (px0,py0,pz0, txyz)
matmulc (t0,trcpy,txyz)

TRANSFORM { ALl, AAl, DDl, THL,
TRANSFORM ( AL2, AA2, DD2, THZ,
TRANSFORM ( AL3, AA3, DD3, TH3,
TRANSFORM ( AL4, AA4, DD4, TH4,
TRANSFORM ( ALS, AAS, DDS, THS,
t3crpy ( £i6, thé, si6, trpy )
T3XYZ ( PX6, PY6, PZ6, txyz )
matmulc ( t6, trpy, txyz )

C Compute the overall transformation, T:

CALL
CALL
CALL
CALL
CALL
CALL

MATMULA
MATMULA
MATMULA
MATMULA
MATMULA
MATMULA

P e e D

TO
Tl
T2
T3
T4
TS

— — e e
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BLl,
BL2Z,
BL3,
BLY,
BLS,

Tl
T2
T3
T4
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— e et e




Q0

CALL MATMULA ( T, T6 )
Calculate the function F
(1
(2
(3

f(l)=t(1l,4)~tdes(1l)
f(z)-t /4)
f(3)=t(3,4)

sum = 0.0
do i=1,3
xssq=sum+£(1i)

enddo

write (6,*) xssq

RETURN
END

e e e de e de de de de Je Je Je Je e e e vk e e e e e de de s e sk e de e e e e e e e R e e e e e e de R R s e e e e de e Je e e e e

SUBROUTINE RANDOM (x,z)

This subroutine generates random numbers in the range 0-1
using a supplied seed x, the returned random number being z.

REAL FM, FX, Z
INTEGER A, X, I, M
DATA I/1/

IF (I .EQ. 0 ) GO TO 1000
I=0

M= 2 ** 20

FM= M

Am 2%*10 + 3

1000 X= MOD{ A*X ,M)
FX= X
I= FX/ M

RETURN
END
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APPENDIX C. PROGRAM ID6 FOR LINEAR SLIDE

PROGRAM ID6

Robot Identification using the Non-linear Least Squares method.
Simulation data is read for the PUMA manipulator from.
the data file PUMA-POS.DAT

an aaon

Change parameter LDFJAC to change the number of obsecrvations,
set LDFJAC = 6 * Number of observations

INTEGER LDFJAC, MM, M, NN, N, NSIG, MAXFN, IOPT, IXJAC, INFER, IZR
PARAMETER (LDFJAC=3%42, MM=LDFJAC, NN=30) '

REAL*8 FJAC(LDFJAC,NN), XJTJ((NN+l)*NN/2)

REAL*8 PARM(4), F(LDFJAC), WORK((S*NN)+(2*MM)+( (NN+1)*NN/2})
REAL*8 X(NN) .

EXTERNAL PUMA_ARM

REAL*8 DANGLE, DLENTH, TQ, DQ, EPS, DELTA, SSQ
REAL*8 SQERRL, SQERR2

real*8 £i0,th0,si0,px0,py0,pz0

REAL*8 DT1, DT2, DT3, DT4, DTS

REAL*8 DDl, DD2, DD3, DD4, DDS

REAL*8 AALl, AA2, AA3, AA4, AAS

REAL*8 ALl, AL2, AL3, AL4, ALS -
REAL*8 BLl, BL2, BL3, BL4, BLS - -
REAL*8 DF6, TH6, SI6, PX6, PY6, PZ6, FI6

REAL*8 U(NN,NN), V(NN,NN), TOL, S(NN), FJTJ{NN,NN)
INTEGER NB, RJTJ, IPATH

INTEGER I, J, K, NOBS, MAXNOBS
PARAMETER (MAXNOBS«360)
REAL#*8 TETLl(MAXNOBS), TET2(MAXNOBS), TET3({MAXNOBS)
REAL*8 TET4(MAXNOBS), TETS(MAXNOBS), TET6(MAXNOBS)
REAL*8 TM(3,MAXNOBS), SCALE
COMMON /PDATA/ NOBS, TM, SCALE,

& TET1, TETZ2, TET3, TET4, TETS, TETS6

C Open data files for inputs and results

OPEN (8, NAME='RESULT.DAT’, STATUS='NEW’')
OPEN (9, NAME='PUMA-POS.DAT’, STATUS='OLD’)
OPEN (10,NAME='INPUT.DAT’, STATUS='QLD’)

c Read input parameters

read (10,*)

read (10,*) £i0,th0,si0,px0,py0,pz0
read (10,*) dtl,ddl,aal,all,bll
read (10,*) dt2,dd2,aa2,al2,bl2
read (10,*) dt3,dd3,aa3,al3,bl3
read (10,*) dt4,dd4,aad4,ald,bld
read (10,*) dt5,dd5,aa5,al5,bls

read (10,~*)

read (10,*) df6,thé,si6,px6,pys,pz6

read (10,*)

read (10,*) nobs,n,dangle,dlenth,magnx,magnl
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CLOSE (10)
c write (6,*) ‘enter nobs’
¢ read (6,*) nobs

C Initialize data variables

X(19)=2aa4
X(20)=AL4

C Read simulated joint data and tool pose

DO J = 1, NOBS

READ (9,*) TETL(J), TET2(J), TET3(J), TET4(J), TETS(J), TET6(J)
read(9,*) TM(1,J), TM(2,J), THM(3,J) .
c read(9,*)
c READ (9,*)a,b,c, TM(1,J)
c read(9,*)a,b,c,TM(2,J)
c read(9,*)a,b,c,TM(3,J)
c read(9,*)
c read(9,*)
p ENDDO
CLOSE (9)

C Initialize scale for the angular rows of the Jacobian
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SCALE=100.0
C Call IMSL routine for non-linear identification

NSIG=3
EPS=0.0
DELTA=0.0
MAXFN=1500
IOPT=1
IXJAC=LDFJAC
M=3*NOBS

CALL ZXSSQ(PUMA_ARM,M,N,NSIG,EPS,DELTA,MAXFN,IOPT,
& PARM,X,58Q,F,FJAC, IXJAC,XJTJ,WORK, INFER, I[ER)

C Calc the jacobian transpose product and it’s rank; rank(3jT3)

NB = N
IPATH = 00
TOL = 1.E-§

CALL DMXTXF(M, N, FJAC, LDFJAC, NB, FJTJ, NN)
od " CALL MARANK(FJTJ, N, N, RJTJ)
CALL DLSVRR(NN, NN, FJTJ, NN, IPATH, TOL, RJTJ, S, U, NN,

OPEN (15,NAME='JTJ.DAT’, STATUS='NEW’)
kk = 0
k =0

C write jTj to a file in column order

write(lS,*)’'mat size(square)’,’rank’
write{(1lS,*)n,zjt]
write(1l5,*)
write(l5,*)’3Tj in column order’
do k = 1,N

do kk = 1,N

write(15,*) £itj(kk,k)

enddo
enddo
CLOSE (15)

C Save results to data file
WRITE (8,*)
WRITE (8,*) '£i0, th0, siQ, px0, py0, pz0’
WRITE (8,889) X(1), X(2), X(3), X(4), x(5), x(6)

WRITE (8,*)

WRITE (8,*) ’'DT1, DDl, AAl, ALl, BLLl’

WRITE (8,888) 0.0, 0.0, X(7), X(8), 0.0

WRITE (8,*)

WRITE (8,*) 'DT2, DD2, AA2, AL2, BL2'

WRITE (8,888) X(9), 0.0, X(10), X(1l1), X{(12)
WRITE (8,*)

WRITE (8,*) 'DT3, DD3, AA3, AL3, BL3’

WRITE (8,888) X(13), X(14), X(15), X(16), 0.0
WRITE (8,*)

WRITE (8,*) ‘DT4, DD4, AA4, AL4, BLY!

WRITE (8,888) X(17), Xx(18), X(19), X(20), 0.0
WRITE (8,*)

WRITE (8,*) ‘DTS, DDS, AAS, ALS, BLS’
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WRITE (8,888) X(21), X(22), X(23), X{(24), 0.0
WRITE (8,*)
WRITE Eg,;ggfop?é TH6, SIS, PX6, PY6, PI6'
.WRITE ’ ) x S)/ X(26 , , 28 , 29)’ x(30)
888  FORMAT ( 5F12.5 ) (26), x(27), x(28), x{
889  FORMAT ( 6F12.5 )

C Calculate root mean square error in identification

TQ = DANGLE
DQ = DLENTH

C Error in identification (angular parameters)

SQERRL =
& (FIO+TQ-X(1))**2 +(THO+TQ-X(2))**2 «
& +(DT3+TQ-X(12))**2 +(DT4+TQ-X(16))**2 +(DTS+TQ-X(20))**2
& +(ALL+TQ-X(7))**2 +(AL2+TQ-X(10))**2
& +(AL3+TQ-X(15))**2 +(AL4+TQ-X(19))**2 +(ALS+TQ-X(23))**2
& +(BL2+TQ-X(11l))**2 +(DT2+TQ-X(8))**2
& +(d£6+tq—x(24))**2

SQERRL = DSQRT( SQERR1/15 )

C Error in identification (length parameters)

SQERR2 =

(PX0+DQ-X(3 **2 +(AA2+DQ-X(9

yy**2 +(AALl+0.0+DQ-X
+(AA3+DQ-X(14))**2 +(AA4+DQ-X(1
+(PYO+DQ-X(4))**2 +(PZ0+DQ-X(5)
+(DD3+DQ-X(13))**2 +(DD4+DQ-X(1
+(px6+dg-x(25))**2 +(pzb+dg-x(2
SQERR2 = DSQRT( SQERR2/11 )

(6)
8))
)drt
7))**2 +(DD5+DQ-X(21)
6))**2

R

(8,*)

(8,%) 'RMS PARMS (LENGTH), RMS PARMS (ANGLE) , '
WRITE (8,*) SQERR2, SQERR1l,’incorrect’

(6,*) 'RMS PARMS (LENGTH), RMS PARMS (ANGLE) "

(6,*) SQERR2,SQERR1,’incorrect’

WRITE (8,*)

WRITE (8,*) 'INFER, IER,NOBS,NSIG, RANK’
WRITE (8,*) INFER, IER,NOBS,NSIG,RJTJ
WRITE (6,*) "INFER, IER,NOBS,NSIG, RANK’
WRITE (6,*) INFER, IER,NOBS,NSIG,RJTJ
WRITE (8,*)

CLOSE (8)

END

)
*%2 +(AAS+DQ-X(22) ) **2

C h*******ﬁ#t*****ﬁﬁ*#*ﬁ*t****ﬁt**ﬁit**ﬁtﬁ**t**ﬁ**ﬁj*#***ﬁ*t*ﬁt*i

SUBROUTINE PUMA_ARM (X, M, N, F)

aan

the PUMA manipulator.
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INTEGER M4, N
REAL#*8 X(N), F(M)

INTEGER II, JJ
real*8
REAL*S
REAL*S
REAL*8
REAL*8
REAL*8
REAL*8

DTL,
DD1,
AAl,
ALlL,
BLL,
F16,

DT2,
pp2,
AA2,
ALZ,
B8L2,
TH6,

DT3,
DD3,
AA3,
AL3,
BL3,
SIS,

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

TH1, TH2,
TO(4,4), T1(4,
TS(4,4), T6(4,
TIMAT(4,4), T(
TINV(4,4),

TH3,

INTEGER I,
 PARAMETER
REAL*8 TETL(MAXNOBS),

J, K,

TMJ

NOBS,
(MAXNOBS=360)

in,thO,siO,pr,pyo,sz

DT4,
DD4,
AA4,
ALY,
BL4,
PX6,

DTS
DDS
AAS
ALS
BLS
PY6, Pz6, DF$S
TH4,
4),

THS
T2(4,4), T3(4,4

T4(4,4)
TRPY(4,4), TXYZ 4)

),
4), (4,
4,4)

(4,4), TDELTA(4,4)
MAXNOBS

TET2(MAXNOBS), TET3(MAXNOBS)

REAL*8 TET4(MAXNOBS), TETS(MAXNOBS), TET6(MAXNOBS)
REAL*8 TM(3,MAXNOBS), SCALE
COMMON /PDATA/ NOBS, TM, SCALE,

& TETL, TETZ2, TET3, TET4, TETS, TET6

C Initialize the TIMAT matrix to an I matrix:

DATA TIMAT/1,0,0,0,0,

C Set parameters for the mani
£i0 = X(1)
th0o = X(2)
si0 = X(3)
px0 = X(4)
pyd = x(5)
pz0 = x(6)
DTL = 0.0
Dol = 0.0
AAL = X(7)

.ALL = X(8)
BLL = 0.0
DT2 = X(9)
DD2 = 0.0
AA2 = X(10)
AL2 = X(11)
BL2 = X{12)
DT3 =,X(13)
DD3 = X(14)
AA3 = X(19)
AL3 = X(16)
BL3 = 0.0
DT4 = X(17)
DD4 = X(18)

1,0,0,0,0,1,0,0,0,0,1/

pulator:
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AAd =
AL4
BL4

DTS
DDS
AAS
ALS
BLS

ORXR XWX RKK

DF6
TH6
SI6
px6
py6
pz6

KX K KX X

C Loop NOBS t

K =20
DO J

[}
(=R

[ ¥ e)
—

O

o e e~ o~
[ SN NN SN V)
F N VO S Iy
— e

(VU SIS U S ]
OV OO w
e

imes

= 1, NOBS

C Initialize the T matrix to an I matrix

DO II
DO JJ

ENDDO
ENDDO

C Manipulator

TH1
TH2
TH3
TH{
THS
FI6

= 1,3
= 1,4

T(II,JJ)

joint angles

DTL + TETI
DT2 + TET2
DT3 + TET3
DT4 +

DTS + TETS
DF§ + TETS6

= TIMAT(II,JJ)

C Compute the T matrices, Tl thru T6:

call
call
call

CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL

t3rpy(£i0,th0,sil,
t3xyz(px0,py0,pz0,

matmulc(t0, trpy, txyz)

TRANSFORM ( ALL,
TRANSFORM ( AL2,
TRANSFORM ( AL3,
TRANSFORM ( AL4,
TRANSFORM ( ALS
T3RPY ( FI6, THSG,
T3XYZ ( PX6, PY6,

MATMULC (T6,

AAl,
AAZ,
AA3,
AA4,
AAS,

SI6,
PZ6,

trpy).
txyz)

pDl,
po2,
DD3,
DD4,
DDS,

TRPY
TXYZ

TRPY, TXYZ )

C Compute the overall transformation, T:

CALL
CALL
CALL

MATMULA (
MATMULA (
MATMULA (

T, TO
T, Tl
T, T2

)
)
)
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TH1,
THZ,
TH3,
THY4,
THS,

)
)

BL1,
BLZ,
BL3,
BLY,
BLS,

Tl
T2
T3
T4
TS




CALL MATMULA ( T, T3 )
CALL MATMULA ( T, T4 )
CALL MATMULA ( T, TS )
CALL MATMULA ( T, T6 )
f(k+l)=t(1l,4)-tm(1, )
£(k+2)=t(2,4)
E(k+3)=t(3,4)

k=k+3

C End the do-loop for counter J
ENDDO
C Write RMS error in F
X5SQ=0.0
DO II=1, 3*NOBS
XSSQ=XSSQ+F(II)*F(II)
ENDDO

XER=SQRT(XSSQ)
WRITE(6,*) XER

RETURN
END
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APPENDIX D. PROGRAM POSE FOR BALL BAR

[ **************'********ﬁitﬁ*iﬁﬁﬁﬁ#t#t****ﬁﬁ**ti*t*ﬁ**ﬁ**.*Q**t**tttﬁﬁ

PROGRAM PUMABAR

This program generates a set of joint angles for tha calibration
of.the PUMA manlpulatoz using a ball bar to constrain the end
point of the manipulatorc.

anan

INTEGER LDFJAC, M, N, obs, nobs
PARAMETER (LDFJAC=3, M=LDFJAC, N=6)

REAL*8 DTl, DT2, DT3, DT4, DTS

REAL*8 DDl, DD2, DD3, DD4, DDS

REAL*8 AAl, AA2, AA3, AA4, AAS

REAL*8 ALl, AL2, AL3, AL4, ALS

REAL*8 BLl, BL2, BL3, BL4, BLS

REAL*8 DF6, FI6, TH6, SI6, PX6, PY6, Pz6
REAL*8 £i0, th0, si0, px0, py0, pzo0

INTEGER infer,ier,iopt,nsig,maxfn

REAL*8 FJAC(LDFJAC,N), xjtj((n+l)*n/2), xjac(ldfjac,n)
REAL*8 parm(4), f({ldfjac), work((S*n)+(2*m)+((n+l)*n/2))
REAL*8 X(N)

real*8 r,phimax,phimin,thetamax,thetamin,phi,theta
real*8 xb,yb,zb,ssq,rr,magnx,magnl

EXTERNAL PUMA ARM -

INTEGER I, J, K
REAL*8 TDES(4,4), gqmax(6), gmin(6), SCALE, DANGLE, DLENTH, NUM
COMMON /PDATA/ TDES, DANGLE, DLENTH, r :
COMMON /KIN/ DT1,DT2,DT3,DT4,DTS,
ALl,AL2,AL3,AL4,ALS,
AAl,AA2,AA3,AA4,AAS,
ppl,D0D2,DD3,DD4,DD5,
BLl,BL2,8L3,BL4,BLS,
£i0,th0,si0,px0,py0,p2z0,
DF6,TH6,SI6,PX6,PY6,P26

R

C Joint angle ranges

data qmin/-lS0.0,—223.0,—52.0:—110.0,—100.0,—266.0/
data gmax/160.0, 43.0, 232.0, 170.0, 100.0, 266.0/

c Inikialize data variables
obs=0

C Open data files for input
OPEN (10, NAME='PUMA~SOLN.DAT’, STATUS='NEW')
open (9, NAME='input.dat’, STATUS='o0ld’)

¢

C Read input kinematic data

read (9,*)

read (9,*) £i0,th0,si0,px0,py0,pz0
read (9,*) dtl,ddl,aal,all,bll
read (9,*) dt2,dd2,aa2,al2,bl2
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read (9,*) dt3,dd3,aa3,al3,bl3

read (9,*) dt4,dd4,aad,ald,bld

read (9,*) dt5,ddS,aa5,al5,bls

read (9,*)

read (9,*) dfé,thé6,sis,px6,pvs

cead (9,*) Pxo.pY®, P20

read (9,*) nobs,r,dangle,dlenth,magnx,magnl
close (9)

C Adjust nominal values

fi0=fiO+dangle
thQ=thl+dangle
si0=siO+dangle
px0=px0+dlenth
pyO=pyO+dlenth
pzO0=pz0+dlenth

dt2=dt2+dangle
dt3=dt3+dangle
dt4=dt4+dangle
dt5=dt5+dangle

all=all+dangle
al2=al2+dangle
al3i=al3+dangle
al4=ald+dangle
alS=alS+dangle

aal=aal+dlenth
aa2=aa2+dlenth
aal=aal3+dlenth
aad=aad+dlenth
aaS=aaS+dlenth

dd3=dd3+dlenth
dd4=dd4+dlenth
dd5=ddS+dlenth

bl2=bl2+dangle

dfé=df6+dangle
thé=th6+dangle
si6=sif+dangle
px6=px6+dlenth
py6=pyé+dlenth
pz6=pzé+dlenth

C Limits on bar rotation
phimax=0.0
phimin=-180.0
thetamax=180.0
thetamin=-180.0

d Get random number seed

write (6,*) 'Type in a 6-digit random number seed’
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tead (5,*) iseed

C Write NOBS to PUMA-SOLN,DAT

write (10,*) nobs

C Start of main loop

1010

obs=obs+1

C Set joint angles to zero

do i=1,n
x(i)=0.0
enddo

C Get random bar angles

1000

call random (iseed,num)
phi=phimin+(phimax-phimin)*num

call random (iseed,num)
thetawthetamin+{thetamax-thetamin) *num

C Calculate end point of the bar

xbmr*cosd(theta)*cosd(phi)
yb=r*sind(theta)*cosd(phi)
Zbm-r*sind(phi)

C Reacheability calculation

if (z .1lt. 0.0) go to 1000

dx=xb-px0

dy=yb-py0

dz=zb-pz0

rresqrt{dx*dx+dy*dy+dz*dz)

if (rr .gt. (AA2+DD4+PZ6)) go to 1000

C Establish desired tool pose

do ii=1,4

do. jij=1,4
TDES(ii,jj)=0.0

enddo

enddo

TDES(1,4)=xb
TDES(2,4)=yb
TDES(3,4)=2b
TDES(4,4) = 1.0

C Call IMSL'ZXSSQ for inverse kinematic solution

nsig=4
eps=0.0
delta=0.0
maxfn=500
iopt=1
ixjac=ldfjac
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CALL. ZXSSQ(puma a
c -

rm,m,n,nsig,eps,delta,maxfn,iopt,pacm,x,
ssq,f,xjac,ixjac,xjtj,work,infer,ier)

C Check for singularities

if (ssq .gt. 0.00

C Check joint angles are

c do j-l 6

c write(6,*) j,x(7)
c 1:ev-1nt(x(j)/350
c x(j)=x({j)-irev*36
c write(6,*)'ranged
c

c enddo

C Print results to 2 deci

001) goto 1000

within ranges

.0)
0.0
",irev,x(j3)

mal places

write(6,*) obs,ssq

WRITE (10,888) X(
888 format ( 6£12.2 )

C Continue for other bar
if (obs .lt. nobs
CLOSE (10)

END

C e e e e de e de e e de e A e e e e ok e e e e e

1), X(2), X(3), X(4), X(5), X(8)

angles

) go to 1010 -

de de Je de de de de e de e Je de de ke de e de de e e e de ole de de de e e de e de v de e de e o e e ke e e e

SUBROUTINE PUMA_ARM (X,M,N,F)

C This subroutine calcula
C the IMSL routine ZXSsQ.
C the PUMA manipulator.

INTEGER M, N
REAL*8 X(N), F(M)

INTEGER II, JJ

REAL*8 DT1, DTZ,
REAL*8 DD1l, DD2,
REAL#*8 AAl, AAZ,
REAL*8 ALl, ALZ,
REAL*8 BLl, BL2,
REAL*8 DF6, FI6,
REAL*8 £i0, tho,

REAL*8 TH1, TH2,
REAL*8 TO0(4,4), T
REAL*8 TS(4,4), T
REAL*8 TIMAT(4,4)
REAL*8 disq,dis

INTEGER I, J, K
4

REAL*8 TDES(4,4),

tes the non-linear function for the use of
It is the forward kinematic solution for

DT3, DT4, DTS

DD3, DD4, DDS

AA3, AA4, AAS

AL3, AL4, ALS

BL3, BL4, BLS

TH6, SI6, PX6, PY6, PZ6
$i0, px0, py0, pz0

TH3, TH4, THS
1(4,4), T2(4,4), T3(4,4), T4(4,4)

6(4,4), trpy(d,4), txyz(4,4)
, T(4,4)

DANGLE, DLENTH, r
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COMMON /PDATA/ TDES, DANGLE, DLENTH, ¢

COMMON /KIN/ DTl,DTZ,DTS,DT4,DT5,
ALl ,AL2,AL3,AL4,ALS,
AAL,AA2,AA3,AA4,AAS,
bbl,pD2,DD3,DD4,DDS,
BLl,BL2,BL3,BL4,BLS,
£i0,th0,si0,px0,py0,pz0,
DF6,TH6,S16,PX6,PY6,PZ6

R

C Initialize the TIMAT matrix to an I matrix:

DATA TIMAT/1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1/
C Initialize the T matrix to an I matrix

DO II = 1,4

DO JJ = 114

T(II,JJ) = TIMAT(IIL,JJ)
ENDDO
ENDDO

C Manipulator joint angles

TH1 = DTL + X(1)
TH2 = DT2 + X(2)
TH3 = DT3 + X(3)
TH4 = DT4 + X(4)
THS = DTS + X(5)
FI6 = DF6 + X(6)

C Compute the T matrices, Tl thru T6:

call t3rpy (£i0,th0,si0, trpy)
call t3xyz (px0,py0,pz0, txyz)
call matmulc (t0,trpy,txyz)

CALL TRANSFORM ( ALl, aAal, ppl, THl, BLl, Tl
CALL TRANSFORM ( ALZ2, AA2, DD2, TH2, BL2, T2
CALL TRANSFORM ( AL3, AA3, DD3, TH3, BL3, T3
CALL TRANSFORM ( AL4, AA4, DD4, TH4, BL4, T4
CALL TRANSFORM ( ALS, AAS5, DD5, THS, BLS, TS

CALL t3cpy ( £i6, thé, si6, tipy )
CALL T3XYZ ( PX6, PY6, PZ6, txyz )
CALL matmulc ( t6§, trpy, txyz )

C Compute the overall transformation, T:

CALL MATMULA ( T, TO )
CALL MATMULA ( T, Tl )
CALL MATMULA ( T, T2 )
CALL MATMULA ( T, T3 )
CALL MATMULA ( T, T4 )
CALL MATMULA ( T, TS )
CALL MATMULA ( T, T6 )

C. Calculate the function F

£(Ll)=t{1l,4)~tdes(1,4)
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£(2)=t(2,4)-tdes(2,4)
< E(3)=t(3,4)-tdes(3,4)

RETURN

END

€ de e dede e e e de e v e e X e e e e e e sk e e R e e R ke e de e e e e s e e ke e e e de ke e o e e e e e e e e e e e R e R e ke e e

SUBROUTINE RANDOM (x,z)

C Th§s subroutiqe generates random numbers in the range 0-1
C using a supplied seed x, the returned random number being z.

REAL FM, FX, 2
INTEGER A, X, I, M
DATA I/1l/

IF ( I .EQ. 0 ) GO TO 1000
I=0

M= 2 ** 20

FM= M

A= 2#*10 + 3

1000 X= MOD( A*X ,M) -
FX= X
Z= FX/ FM

RETURN
END

C dedede s de ok A de e de de e e e Ak e A e e de e e e e e de e e e de e A e e e e A e de e de de e st de e e e e e e e e e e ok ke e e ke
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APPENDIX E. PROGRAM ID6 FOR BALL BAR

C *hkdkkkhmkhhiiruinininr

PROGRAM ID6

TR e de e ek ek e e e ek e e de e R gtk ke kK e e e e R e ke e R A R e

Robot Identification using the
Simulation data is read for the
the data file PUMA-soln.DAT

a0 aaan

set LDFJAC = Number of observations

Non-linear Least Squares method.
PUMA manipulator from

Change parameter LDFJAC to change the number of observations,

INTEGER LDFJAC, MM, M, NN, N, NSIG, MAXFN, IOPT, IXJAC, INFER, IER

PARAMETER (LDFJAC=100, MM=LDFJAC, NN=30)

REAL*8 FJAC(LDFJAC,NN),

XJITI((NN+1)*NN/2)

REAL*8 PARM(4), F
REAL*8 X(NN)
EXTERNAL PUMA_ARM

DL
sQ
tho,
DT2,
DD2,
AA2,
AL2,
BL2,
DF6,

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

DANGLE,
SQERRL,
fio,
DTl,
pol,
AAlL,
ALl,
BLL,
F16,

REAL*8 U(NN,NN),
INTEGER NB, RJTJ,

INTEGER I, J, K,

(LDFJAC), WORK((S*NN)+(2*MM)+( (NN+1)*NN/2))

ENTH, TQ, 55Q
ERR2
siQ,
DT3,
pD3,
AA3,
AL3,
BL3,
THE,

DELTA,

DQ, EPS,

px0, pz0
DT4,
DD4,
AA4,
ALY4,
B8L4,
SI6,

pYo0,
DTS

DDS
AAS
ALS
BLS
PX6,

PY6, PZ6

V(NN,NN), S(NN), FJTJ(NN,6NN)

IPATH

TOL,

NOBS, MAXNOBS

REAL*8 magnx,magnl

PARAMETER (MAXNOBS=100)

REAL*8 TETL(MAXNOBS), TET2({MAXNOBS),

REAL*8 TET4(MAXNOBS), TETS(MAXNOBS),

REAL*8 R

COMMON /PDATA/ NOBS, TET1l, TET2, TET3,

COMMON /KIN/ DT1,DT2,DT3,DT4,DTS,
ALl ,AL2,AL3,AL4,ALS,
AALl,AA2,AA3,AA4,AAS,
DD1l,DD2,DD3,DD4,DDS,
BLl,BL2,BL3,BL4,BLS,
£i0,th0,si0,px0,py0,pz0,
DF6,TH6,SI6,PX6,PY6,PZ6

R

C Open data files for inputs and results

TET4,

TET3 (MAXNOBS)
TET6 ( MAXNOBS)

TETS,

OPEN (8, NAME='RESULT.DAT’, STATUS='NEW’)
OPEN (9, NAME=~'PUMA-SOLN.DAT’, STATUS='OLD’)
OPEN (10,NAME='INPUT.DAT’, STATUS='CLD’)

TETS,

¢ Read input

parameters

(10,*)
(10,*) £i0,th0,si0,px0,py0,pz0
(10,*) dtl,dd1l,aal,all,bll

read
read
read
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read (10,*) dt2,dd2,aa2,al2,bl2

read (10,*) dt3,dd3,aa3,al3,bl3

read (10,*) dtd4,ddd4,aad,ald,bld

read (10,*) dt5,ddS,aa5,als,bls

read (10,*)

read (10,*) df6,thé,si6,px6,py6,pzs

read (10,*)

read (10,*) nobs,r,dangle,dlenth,magnx,magnl
CLOSE (10)

C Initialize data variables

R=R+MAGNX
C Read simuiated joint data and tool pose
READ (9,*) NOBS
DO J = 1, NOBS
READ (9,*) TETL(J), TET2(J), TET3(J), TET4(J), TETS(J), TETS(J)

ENDDO
CLOSE (9)
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C Call IMSL routine for non-linear identification

NSIG=4
EPS=0.0
DELTA=0.0
MAXFN=1000
I0pPT=l
IXJAC=LDFJAC
M=NOBS

CALL ZXSSQ(PUMA ARM,M,NN,NSIG,EPS,DELTA,MAXFN,IOPT,
& PARM,X,8SQ,F,FJAC, IXJAC,XJTJ, WORK, INFER, IER)

C Calc the jacobian transpose product and it’s rank; raak{iTj)

NB = NN
IPATH = 00
TOL = 1.E-3

CALL DMXTXF(M, NN, FJAC, LDFJAC, NB, FJTJ, NN)
CALL DLSVRR(NN, NN, FJTJ, NN, IPATH, TOL, RJTJ, S, U, NN, V, NN)

OPEN (15,NAME='JTJ.DAT’, STATUS='NEW’)
kk = 0
k =0

C write jTj to a file in column order

write(lS,*)’'mat size(square)’,’rank’
write(l5,*)nn,cjtj
write(lS,*)
write(1l5,*)’3jTj in column order’
do k = 1,NN

do kk = 1,NN

write(15,*) £jtj(kk,k)

enddo
enddo
CLOSE (15)

C Save results to data file

WRITE (8,*)

WRITE (8,*) '£fi0, th0, si0, px0, py0, pz0’
WRITE (8,*) X(1), X(2), X(3), X(4), x(5), x(6)
WRITE (8,*)

WRITE (8,*) ’'DT1, DDl, AAl, ALLl, BLLl’

WRITE (8,*) 0.0, 0.0, X(7), X(8), 0.0

WRITE (8,*)

WRITE (8,*) ’'DT2, DD2, AA2, AL2, BL2'

WRITE (8,*) X(9), 0.0, X(10), X(11l), X(12)
WRITE (8,*)

WRITE (8,*) 'DT3, DD3, aA3, AL3, BL3

WRITE (8,*) X(13), X(14), X(15), X(16), 0.0
WRITE (8,*)

WRITE (8,*) ‘DT4, DD4, AA4, AL4, BL4’

WRITE (8,*) X(17), X(18), X(19), X(20), 0.0
WRITE (8,*)

WRITE (8,*%*) ‘DTS, DDS, AAS, ALS, BLS’

WRITE (8,*) X(21), X(22), X(23), X(24), 0.0
WRITE (8,*)
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WRITE (8,*) 'DF6, TH6, SIS, 2X6, PYS, P26’

WRITE (8,%) x(25), x(26), x(27), x(28), x(29), x(30)
888 FORMAT ( 5F12.5 )
889 FORMAT ( 6FL2.5 )

WRITE(8,*) ‘R=’, R
c Restore initial values of input parameters

open (10,name='input.dat’,status='old’)

read (10,~)

read (10,*) £i0,th0,si0,px0,py0,pz0
read (10,*) dtl,ddl,aal,all,bll
read (10,*) dt2,dd2,aa2,al2,bl2
read (10,*) dt3,dd3,aa3,a13,bl3
read (10,*) dt4,dd4,aad,ald,bld
read (10,*) dt5,dd5,aaS5,als,bls
read (10, ~*)

read (10,*) df6,th6,si6,px6,py6,pz6
read (10,*)

read (10,*) nobs,r,dangle,dlenth,magnx,magnl
CLOSE (10)

C Calculate root mean square error in identification

TQ = DANGLE
DQ = DLENTH

C Error in identification (angular parameters)

SQERR]1 =
(DT2+TQ-X(6
+(DT3+TQ-X(1
+{DTS+TQ-X(1
+ S
+(

)th

))**2 +(DT4+TQ-X(1

) * kD

J**2  +(AL2+TQ-X(8))**2
) **2 +(AL4+TQ-X(17))**2
) 9))

'y

) )**2

ALLl+TQ-X(
AL3+TQ-X(1
+(ALS+TQ-X(21))**2 +(BL2+TQ-X(
+(DF6+TQ-X(22))**2
SQERRL = DSQRT( SQERR1/11 ) .

)
0
8
)
3

R R

C Error in identification (length parameters)

SQERR2 =

& (AAL+DQ-X(4))** +(AA2+DQ-X(T7) ) **2

& (AA3+DQ-X(12))**2 +(AA4+DQ-X(16) ) **2
& +(AAS+DQ-X(20))**2 +(DDLl+DQ-X(3))**2

& +(DD3+DQ-X(11))**2 +(DD4+DQ-X(15))**2
& +(DDS+DQ-X(19))**2 +(PZ6+DQ- x(24))**2
& +(PX6+DQ-X(23))**2

& +(px0+dq-x(l))**2 +{py0+dg-x(2))**2

SQERR2 = DSQRT( SQERR2/13 )

WRITE (8,*)

WRITE (8,*) 'RMS PARMS (LENGTH), RMS PARMS (ANGLE)’
WRITE (8,*) SQERR2, SQERRL

WRITE (6,*) 'RMS PARMS (LENGTH), RMS PARMS (ANGLE)’
WRITE (6,*) SQERR2,SQERRL
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WRITE (8,*)

WRITE (8,+%) 'INFZR, IER,NOBS,NSIG,rank’
WRITE (8,+%) INFER, IER,NOBS,NSIG,cjtj
“WRITE (6,*) "INFER, IER,NOBS,NSIG,rank’
WRITE (6,*) INFER, IER,NOBS,NSIG,cjtj
WRITE (8, *)

CLOSE (8)
END

C e e de e e e e e e A e e R e e e e e A e de e e e ke e e e e de e e e Kk e e e e e e de e de e e e e e e e e e ok e e e e e e e e e ke e e

SUBROUTINE PUMA_ARM (X, M, N, F)

This subccutipe calculates the non-linear function for the use of
the IMSL routine ZXSSQ. It is the forward kinematic solution for
the PUMA manipulator.

aoa

INTEGER M, N
REAL*8 X(N), F(¥)

INTEGER II, JJ

REAL*8 £i0, th0, si0, px0, py0, pz0
REAL*8 DTL1, DT2, DT3, DT4, DTS

REAL*8 DD1, DD2, DD3, DD4, DDS

REAL*8 AAl, AA2, AA3, AA4, AAS

REAL*8 ALl, AL2, AL3, AL4, ALS

REAL*8 BLl, BL2, BL3, BL4, BLS

REAL*8 fi6, df6, th6é, si6, PX6, PY6, PI6

REAL*8 TH1, TH2, TH3, TH4, THS

REAL*8 TO(4,4), T1(4,4), T2(4,4), T3(4,4), T4(4,4)
REAL*8 TS5(4,4), T6(4,4), trpy(4,4), txyz(4,4)
REAL*8 TIMAT(4,4), T(4,4)

INTEGER I, J, K, NOBS, MAXNOBS

PARAMETER (MAXNOBS=100)

REAL*8 TET1({MAXNOBS), TET2{MAXNOBS), TET3(MAXNOBS)

REAL*8 TET4(MAXNOBS), TETS(MAXNOBS), TET6(MAXNOBS)

REAL*8 R, RR

COMMON /PDATA/ NOBS, TET1, TET2, TET3, TET4, TETS, TETS, R

COMMON /KIN/ DT1,DT2,DT3,DT4,DTS,
ALl,ALZ2,AL3,AL4,ALS,
AAl ,AA2,AA3,AA4,AAS,
ppl,pD2,DD3,DD4,DD5,
BLl,BL2,BL3,BL4,BLS,
£i0,th0,si0,px0,py0,pz0,
DF6,TH6,S16,PX6,PY6,PZ6

PR

¢

C Initialize the TIMAT matrix to an I matrix:
DATA TIMAT/1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1/
C Set parameters for the manipulator:
£i0 = X(1)
tho = X(2)
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C Loop NOBS

K =20
DO J = 1, NOBS

C Initialize the T matrix to an I matrix

DO II = 1,4
DO JJ = 1,4
T(II,JJ) = TIMAT(II,JJ)
ENDDPO
ENDDO

C. Manipulator joint angles
THL = DT1 + TET1(J)

TH2 = DT2 + TET2(J)
. TH3 = DT3 + TET3(J)
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TH4 = DT4 + TET4(J)
THS = DTS + TETS(J)
FI6 = DF§ + TET6(j)

C Compute the T matrices, Tl thru Té6:

call t3cpy(£i0,th0,si0, tepy)
call t3xyz(px0,py0,pz0, txyz)
call matmulc(t0,trpy,txyz)

CALL TRANSFORM ( ALl, AAl, DDI,
CALL TRANSFORM ( ALZ, AA2, DD2,
CALL TRANSFORM ( AL3, AA3, DD3,
CALL TRANSFORM ( AL4, AA4, DD4,
CALL TRANSFORM ( ALS5, AAS, DDS,

CALL t3rpy ( £i6, thé6, si6, trpy
CALL T3XYZ ( PX6, PY6, PZ6, txyz
CALL matmulc ( t6, trpy, txyz )

C Compute the overall transformation, T:

CALL MATMULA ( T, TC )
CALL MATMULA ( T, Tl )
CALL MATMULA ( T, T2 )
CALL MATMULA ( T, T3 )
CALL MATMULA ( T, T4 )
CALL MATMULA ( T, TS )
CALL MATMULA ( T, T6 )

C Calculate the function F

rre=dsqre( t(1l,4)*t(l,4)+t(2,4)*t(2,4)+L(3,4)*t(3,4)

£(j)=dabs( cr-r)

C End the'do—loop for counter J
ENDDO

C Compute RMS error

sumsqg=0.0

do j=1, nobs
sumsqgmsumsg+£(j)*£(3)
enddo
rms=sqrt(sumsqg/nobs)
write (6,*) rms

RETURN
END

THL,
TH2,
TH3,
TH4,
THS,

)
)

BLL,
BLZ,
BL3,
BL4,
BLS,

Tl
T2
T3
T4
TS

)

]
C *t**ﬁ**ﬁ*ﬁ*t#********ﬁﬁi****i**************ﬁﬁ*****ﬁ*******it*ﬁ#fﬁﬁ*ki
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